Large scale molecular dynamics simulation of self-assembly processes in short and long chain cationic surfactants

(Note: The full text of this document is currently only available in the PDF Version )

J.-B. Maillet, V. Lachet and Peter V. Coveney


Abstract

We report on an investigation of the structural and dynamical properties of n-nonyltrimethylammonium chloride (C9TAC) and erucyl bis[2-hydroxyethyl]methylammonium chloride (EMAC) micelles in aqueous solution. A fully atomistic description was used, and the time evolution was computed using molecular dynamics. The calculations were performed in collaboration with Silicon Graphics Inc. using the large-scale atomic/molecular massively parallel simulator (LAMMPS) code (version 5.0, CRADA Collaboration, Sandia National Laboratory, USA, 1997) on a range of massively parallel platforms. Simulations were carried out in the isothermal–isobaric (N, P, T) ensemble, and run for up to 3 ns. Simulated systems contained approximately 50 surfactant cations and chloride counterions, surrounded by 3000 water molecules. Starting from different initial configurations (spherical micelle, wormlike micelle) in the case of the C9TAC molecule, we observe shape transformations on the timescale of nanoseconds, micelle fragmentations, and surfactant–monomer exchange with the surrounding medium. Starting from a random distribution of surfactant molecules in the solution, we observe the mechanism of micelle formation at the molecular level. The mechanism of self-assembly or fragmentation of a micelle is interpreted in terms of generalised classical nucleation theory. Our results indicate that, when these systems are far from equilibrium and at high surfactant concentration, the basic aggregation–fragmentation mechanism is of Smoluchowski type (cluster–cluster coalescence and break up); closer to equilibrium and at lower surfactant concentration, this mechanism appears to follow a Becker–Döring process (stepwise addition or removal of surfactant monomers). In the case of the EMAC molecule, we have characterised two different structures (spherical and cylindrical) of the micelle, and have found that water penetration is not important. We have also studied the effect of the introduction of co-surfactant (salicylate) molecules to the EMAC system; hydrogen bonds between surfactant head groups and co-surfactant molecules were observed to play an important role in stabilising wormlike micelles.


References

  1. G. Gompper and M. Schick, Phase transitions and critical phenomena, ed. C. Domb and J. Lebowitz, 1994, 16, pp. 1–181 Search PubMed.
  2. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc., Faraday Trans. 1, 1975, 72, 1525 Search PubMed.
  3. J. N. Israelachvili, Intermolecular and surface forces with applications to colloidal and biological systems, Academic Press, New York, 1985 Search PubMed.
  4. H. Kuhn, B. Breitzke and H. Rehage, Colloid Polym. Sci., 1998, 276, 824 CrossRef CAS.
  5. L. Laaksonen and J. B. Rosenholm, Chem. Phys. Lett., 1993, 216, 429 CrossRef CAS.
  6. H. Kuhn and H. Rehage, Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 1485 CAS.
  7. K. Watanabe and M. L. Klein, J. Phys. Chem., 1989, 93, 6897 CrossRef CAS.
  8. K. Watanabe, M. Ferrario and M. L. Klein, J. Phys. Chem., 1988, 92, 819 CrossRef CAS.
  9. B. M. Boghosian, P. V. Coveney and A. N. Emerton, Proc. R. Soc. London, Ser. A, 1996, 452, 1221 CAS.
  10. A. N. Emerton, F. W. J. Weig, P. V. Coveney and B. M. Boghosian, J. Phys. Condens. Matter, 1997, 9, 8893 CrossRef CAS.
  11. B. M. Boghosian, P. V. Coveney and P. J. Love, Proc. R. Soc. London, Ser. A, 1999, in press Search PubMed.
  12. F. Higuera and J. Jimenez, Europhys. Lett., 1989, 9, 663 Search PubMed.
  13. H. Chen, B. M. Boghosian and P. V. Coveney, 1999, preprint.
  14. P. J. Hoogerbrugge and J. M. V. A. Koelman, Europhys. Lett., 1992, 19, 155 Search PubMed.
  15. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker and P. van der Schoot, Phys. Rev. E, 1997, 55, 3124 CrossRef CAS.
  16. E. G. Flekkøy and P. V. Coveney, Phys. Rev. Lett., 1999, 83, 1775 CrossRef.
  17. E. G. Flekkøy and P. V. Coveney, 1999, preprint.
  18. B. Smit, K. Esselink, P. A. J. Hilbers, N. M. van Os, L. A. M. Rupert and I. Szleifer, Langmuir, 1993, 9, 9 CrossRef CAS.
  19. R. Becker and W. Döring, Ann. Phys. (Leipzig), 1935, 24, 719 Search PubMed.
  20. M. Volmer and A. Weber, Z. Phys. Chem. (Munich), 1926, 119, 277 CAS.
  21. G. E. A. Annianson and S. N. Wall, Ber. Bunsen-Ges. Phys. Chem., 1974, 82, 981 Search PubMed.
  22. P. V. Coveney and J. A. D. Wattis, Proc. R. Soc. L ondon, Ser. A, 1996, 452, 2079 CAS.
  23. J. A. D. Wattis and P. V. Coveney, J. Chem. Phys., 1997, 106, 9122 CrossRef CAS.
  24. B. Chase, W. Chmilowski, Y. Dang, K. Krauss, T. Lantz, C. Parham and J. Plummer, Oilfield Rev., 1997, Autumn, 21 Search PubMed.
  25. A. T. Hagler, E. Huler and S. Lifson, J. Am. Chem. Soc., 1974, 96, 5319 CrossRef CAS.
  26. J. P. P. Stewart, Molecular Orbital Package, version 6.0, QCPE, No. 455, 1990 Search PubMed.
  27. W. L. Jorgensen, J. Chandrasekhar and J. D. Madura, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  28. E. S. Boek, P. V. Coveney, S. J. Williams and A. S. Bains, Mol. Simul., 1996, 18, 145 Search PubMed.
  29. W. Hoover, Phys. Rev. A, 1985, 31, 1695 CrossRef.
  30. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, New York, 1996 Search PubMed.
  31. Large-scale Atomic/Molecular Massively Parallel Simulator, version 5.0, CRADA collaboration, Sandia National Laboratory, USA, 1997 Search PubMed.
  32. Cerius2 V 3.8, Molecular Simulations Inc., 1998 Search PubMed.
  33. M. L. Connolly, J. Appl. Crystallogr., 1983, 16, 548 CrossRef CAS.
  34. R. Bacaloglu, A. Blasko, C. A. Bunton, G. Cerichelli and F. Ortega, J. Phys. Chem., 1990, 94, 5062 CrossRef.
  35. P. Mukerjee and K. J. Mysels, Critical micelle concentrations of aqueous surfactant systems, National Bureau of Standards, Washington, DC, 1970 Search PubMed.
  36. T. Imae and S. Ikeda, J. Chem. Phys., 1986, 90, 5216 CAS.
  37. T. L. Hughes, personal communication.
Click here to see how this site uses Cookies. View our privacy policy here.