Computer simulation of liquid tetramethylurea and its aqueous solution

(Note: The full text of this document is currently only available in the PDF Version )

Paulo Belletato, Luiz Carlos Gomide Freitas, Elizabeth P. G. Arêas and Paulo Se′rgio Santos


Abstract

Thermodynamic properties and correlation functions for the pure liquid 1,1,3,3-tetramethylurea (TMU) and its aqueous solution were obtained by Monte Carlo simulation in the isothermic and isobaric (NPT) ensemble at 25°C and 1.0 atm. An eight site potential model combining Lennard-Jones plus coulombic functions was developed to calculate intermolecular interaction between TMU molecules. In this model the methyl groups are represented by a united atom approach. The partial charges needed for Coulomb interactions and the geometry of the TMU molecule were calculated at the HF level using a 6-31g* basis set with the CHELPG formalism. The parameters needed for the Lennard-Jones potential functions were optimised to reproduce experimental values for the density and enthalpy of vaporisation of the pure liquid at 298 K and 1.0 atm. The results obtained for density, enthalpy of vaporisation and other thermodynamic properties for the pure liquid TMU are in good agreement with experimental data. Radial distribution functions (rdf) obtained for liquid TMU are broad indicating a low degree of molecular organisation. Dipole–dipole correlation shows a preference for anti-parallel molecular orientation at short distances. Therefore, the present results are consistent with experimental data indicating the formation of dimers due to dipole–dipole interaction. A further test for the potential model was also provided by studying the hydration of TMU on TIP4P water. Potential functions for water–TMU intermolecular interaction were obtained by standard combining rules. The value obtained for the free energy of hydration using statistical perturbation theory was ΔG=-16.82 kJ mol-1, to be compared with the value ΔG=-56.48 kJ mol-1 obtained for urea. Radial distribution functions for water–TMU interaction show features indicating hydrogen bonding between the TMU oxygen site and hydrogen of water. Compared to pure water, our results shows that the water–TMU hydrogen bonding is more stable. The results also show that in dilute TMU–water solution the influence of TMU on the energetics of water–water hydrogen bonding is negligible. Contrasting with gas phase results for the TMU–water dimer the present results do not indicate the formation of hydrogen bonding interaction with the nitrogen site of TMU in aqueous solution. This finding is in agreement with previous hydration studies of dimethylformamide and also with the hydrophobic behaviour of TMU observed in experiments. Dipole–dipole correlation results obtained for TMU and water molecules in the water–TMU solution exhibit significant differences when compared to the ones for the pure liquids.


References

  1. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford University Press, Oxford, 1986 Search PubMed.
  2. D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, Cambridge, 1995 Search PubMed.
  3. J. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 1986 Search PubMed.
  4. Molecular Liquids: New Perspectives in Physics and Chemistry, NATO ASI Series, ed. J. J. Teixeira-Dias, Kluwer Academic, Dordrecht, 1991 Search PubMed.
  5. Computer Simulation in Chemical Physics, ed. M. P. Allen and D. J. Tidesley, Kluwer Academic Publishers, Dordrecht, 1993 Search PubMed.
  6. N. L. Allinger, Y. H. Yuh and J. H. Lii, J. Am. Chem. Soc., 1989, 111, 8551 CrossRef CAS.
  7. T. A. Halgren, J. Am. Chem. Soc., 1992, 114, 7827 CrossRef CAS.
  8. W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rieves, J. Am. Chem. Soc., 1996, 118, 11225 CrossRef CAS.
  9. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179 CrossRef CAS.
  10. J. C. Smith and M. Karplus, J. Am. Chem. Soc., 1992, 114, 803.
  11. J. A. Riddick, W. B. Bunger and T. K. Sakano, Organic Solvents. Wiley-Interscience, New York, 1970 Search PubMed.
  12. Y. Marcus, Ion Solvation, John Wiley & Sons Limited, New York, 1985 Search PubMed.
  13. K. R. Lindorfs, S. H. Opperman, M. E. Glover and J. D. Seese, J. Chem. Phys., 1971, 75, 21.
  14. L. Cser, B. Farago, T. Groszz, G. Jancsó and Yu. M. Ostanveich, physica B, 1992, 180–181, 848 CrossRef CAS.
  15. A. Tovchigrechko, M. Rodnikova and J. Barthel, J. Mol. Liq., 1999, 79, 187 CrossRef CAS.
  16. L. Cser, G. Jancsó, P. Jovari and G. Kali, J. Phys. Chem. B, 1998, 102(13), 2313 CrossRef CAS.
  17. I. A. Chaban, M. N. Rodnikova, J. Barthel, L. L. Chaikov, S. V. Krivokhiza and V. V. Zhackova, J. Mol. Liq., 1999, 80(1), 27 CrossRef CAS.
  18. V. Castelletto, E. P. G. Arêas, J. A. G. Arêas and A. F. Craievich, J. Chem. Phys., 1998, 109(14), 6133 CrossRef CAS.
  19. K. Tóth, P. Bopp and G. Jancsó, THEOCHEM, 1996, 381, 181 CAS.
  20. M. Mantle and S. D. Husar, Infect. Immun., 1993, 61(6), 2340 CAS.
  21. N. Devaraj, M. Sheykhnazari, W. S. Warren and V. P. Bhavanandan, Glycobiology, 1994, 4(3), 307 CAS.
  22. E. P. G. Arêas, H. H. A. Menezes, P. S. Santos and J. A. G. Arêas, J. Mol. Liq., 1999, 79(1), 45 CrossRef CAS.
  23. L. C. G. Freitas, THEOCHEM, 1993, 282, 151 CrossRef.
  24. L. C. G. Freitas and J. M. M. Cordeiro, THEOCHEM, 1995, 333, 189 CrossRef.
  25. A. L. L. Sinoti, J. R. Politi and L. C. G. Freitas, J. Braz. Chem. Soc., 1996, 7(2), 133 Search PubMed.
  26. A. L. L. Sinoti, J. R. Politi and L. C. G. Freitas, THEOCHEM, 1996, 366, 249 CrossRef CAS.
  27. L. C. G. Freitas, J. M. M. Cordeiro and F. L. L. Garbujo, J. Mol. Liq., 1999, 79, 1 CrossRef CAS.
  28. J. M. M. Cordeiro and L. C. G. Freitas, Z. Naturforsch., A., 1999, 54(2), 110.
  29. A. K. Rappé and C. J. Casewit, Molecular Mechanics across Chemistry, University Science Books, Suasalito, 1997 Search PubMed.
  30. GAUSSIAN 94, revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheese-man, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghava-chari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  31. C. S. Frampton and K. E. B. Parkes, Acta Crystallogr. Sect. C, 1996, 52, 3246 CrossRef.
  32. C. E. Dykstra, Chem. Rev., 1993, 93(7), 2339 CrossRef CAS.
  33. W. L. Jorgensen and J. Tirado-Rieves, J. Am. Chem. soc., 1988, 110, 1657 CrossRef CAS.
  34. W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc., 1990, 112, 4768 CrossRef CAS.
  35. W. L. Jorgensen, J. Chem. Phys., 1986, 90, 1276 CAS.
  36. W. L. Jorgensen, J. A. Briggs and M. L. Contreras, J. Phys. Chem., 1990, 94, 1683 CrossRef CAS.
  37. W. L. Jorgensen, Chemtracts: Org. Chem., 1991, 4, 91 Search PubMed.
  38. M. Breneman and K. B. J. Wiberg, J. Comput. Chem., 1990, 11, 361 CrossRef CAS.
  39. E. M. Duffy, D. L. Severance and W. L. Jorgensen, Isr. J. Chem., 1993, 33, 323 CAS.
  40. L. C. G. Freitas, DIADORIM program, version 3.0, Departamento de Química, UFSCar, São Carlos, 1999 Search PubMed.
  41. W. L. Jorgensen, J. Chem. Phys., 1983, 86(26), 5304.
  42. SPARTAN 5.0, 1995, Wavefunction Inc., 18401 Van Karman Ave., Ste 370, Irvine, CA 92612 Search PubMed.
  43. M. Newmann, J. Chem. Phys., 1985, 82, 5663 CrossRef CAS.
  44. H. E. Alper and R. M. Levy, J. Chem. Phys., 1989, 91, 1242 CrossRef CAS.
  45. R. W. Zwanzig, J. Chem. Phys., 1954, 22, 1420 CAS.
  46. D. L. Beveridge and F. M. DiCapua, Annu. Rev. Biophys. Biol., 1989, 18, 431 Search PubMed.
  47. J. C. Owick and H. A. Scheraga, Chem. Phys. Lett., 1977, 47, 600 CrossRef.
  48. A. A. Kozyro, A. P. Simirskii and V. S. Markovinik, Russ. J. Phys. Chem. (Transl. of Zh. Fiz. Khim.), 1988, 62, 895–897 Search PubMed.
  49. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  50. J. F. Coetzee and C. D. RitchieSolute–solvent interactions, Marcel Dekker, New York, 1969 Search PubMed.
  51. C. J. Cramer and D. G. Truhlar, J. Comput. Aided Mol. Des., 1992, 6(6), 629 CrossRef CAS.
  52. V. Yu. Bezzabotnov, L. Cser, T. Grósz, G. Jancsó and Yu. M. Ostanevich, J. Phys. Chem., 1992, 96, 976 CrossRef CAS.
  53. G. Barone, G. Castronuovo, C. D. Volpe and V. Elia, J. Solution Chem., 1971, 6, 117 CrossRef.
  54. R. Sayle, RASMOL Program, v. 5, Biomolecular Structure Group, Glaxo Research & Development, Stevenage, UK, 1994 Search PubMed.
  55. R. C. Rizzo and W. L. Jorgensen, J. Am. Chem. Soc., 1999, 121, 4827 CrossRef CAS.
  56. M. Neumann, Mol. Phys., 1983, 50, 841.
Click here to see how this site uses Cookies. View our privacy policy here.