Interlayer interactions in graphite and carbon nanotubes

(Note: The full text of this document is currently only available in the PDF Version )

Adam H. R. Palser


Abstract

A simple tight-binding plus dispersion model is developed to describe the stacking of graphite planes, and then applied to the study of multi-walled carbon nanotubes. According to this model, the variations in the interlayer interaction energy as two nested nanotubes are rotated and translated relative to one another will be far smaller than the variations in the interlayer energy between two sheets of graphite, and multi-walled nanotubes with inter-wall spacings greater than the typical 3.4 Å will tend to deform towards having polygonal cross sections. These predictions are discussed in the light of both earlier theoretical work and recent high-resolution transmission electron microscopy (HRTEM) images of nanotube cross sections.


References

  1. S. Iijima, Nature, 1991, 354, 56 CrossRef CAS.
  2. S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, Nature, 1997, 386, 474 CrossRef CAS.
  3. S. Frank, P. Poncharal, Z. L. Wang and W. A. de Heer, Science, 1998, 280, 1744 CrossRef CAS.
  4. M. Ge and K. Sattler, Science, 1993, 260, 515 CAS.
  5. M. Liu and J. M. Cowley, Carbon, 1994, 32, 393 CAS.
  6. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett., 1992, 68, 1579 CrossRef CAS.
  7. J. W. Mintmire, B. I. Dunlap and C. T. White, Phys. Rev. Lett., 1992, 68, 631 CrossRef CAS.
  8. C. T. White, D. H. Robertson and J. W. Mintmire, Phys. Rev. B, 1993, 47, 5485 CrossRef CAS.
  9. C. T. White and T. N. Todorov, Nature, 1998, 393, 240 CrossRef CAS.
  10. L. G. Bartlett, Part II Thesis, Oxford University, 1998.
  11. H. J. F. Jansen and A. J. Freeman, Phys. Rev. B, 1987, 35, 8207 CrossRef CAS.
  12. J.-C. Charlier, X. Gonze and J.-P. Michenaud, Phys. Rev. B, 1991, 43, 4579 CrossRef CAS.
  13. J.-C. Charlier, X. Gonze and J.-P. Michenaud, Carbon, 1994, 32, 289 CAS.
  14. S. B. Trickey, F. Müller-Plathe, G. H. F. Diercksen and J. C. Boettger, Phys. Rev. B, 1992, 45, 4460 CrossRef CAS.
  15. M. C. Schabel and J. L. Martins, Phys. Rev. B, 1992, 46, 7185 CrossRef CAS.
  16. J. Furthmüller, J. Hafner and G. Kresse, Phys. Rev. B, 1994, 50, 15606 CrossRef.
  17. R. Ahuja, S. Auluck, J. Trygg, J. M. Wills, O. Eriksson and B. Johansson, Phys. Rev. B, 1995, 51, 4813 CrossRef CAS.
  18. J. C. Boettger, Phys. Rev. B, 1997, 55, 11202 CrossRef CAS.
  19. J.-C. Charlier and J.-P. Michenaud, Phys. Rev. Lett., 1993, 70, 1858 CrossRef CAS.
  20. L. A. Girifalco and R. A. Lad, J. Chem. Phys., 1956, 25, 693 CAS.
  21. D. Tománek, S. G. Louie, H. J. Mamin, D. W. Abraham, R. E. Thomson, E. Ganz and J. Clarke, Phys. Rev. B, 1987, 35, 7790 CrossRef CAS.
  22. J. D. Bernal, Proc. R. Soc. London, Ser. A, 1924, 106, 749 CrossRef.
  23. H. Lipson and A. R. Stokes, Proc. R. Soc. London, Ser. A, 1942, 181, 101.
  24. R. R. Haering, Can. J. Phys., 1958, 36, 352.
  25. L. Samuelson, I. P. Batra and C. Roetti, Solid State Commun., 1980, 33, 817 CrossRef CAS.
  26. L. Samuelson and I. P. Batra, J. Phys. C., 1980, 13, 5105 CrossRef CAS.
  27. C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, J. Phys.: Condens. Matter, 1992, 4, 6047 CrossRef CAS.
  28. D. Porezag, Th. Frauenheim, Th. Köhler, G. Seifert and R. Kaschner, Phys. Rev. B, 1995, 51, 12947 CrossRef CAS.
  29. M. T. Yin and M. L. Cohen, Phys. Rev. B, 1984, 29, 6996 CrossRef CAS.
  30. G. Seifert, H. Eschrig and W. Bieger, Z. Phys. Chem., 1986, 267, 529 CAS.
  31. K. T. Tang and J. P. Toennies, J. Chem. Phys., 1984, 80, 3726 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.