Gas and liquid phase sorption studies of lindane on NaY and MCM-41 molecular sieves

(Note: The full text of this document is currently only available in the PDF Version )

T.-A. Morris and K. Huddersman


Abstract

Fundamental studies on the gas and liquid phase uptake of the chlorinated pesticide lindane (γ-hexachlorocyclohexane) on aluminosilicate molecular sieves NaY and MCM-41 (d-spacing=1.26 nm, Si/Al=2.6/1) were undertaken in an effort to evaluate their ability to act as barrier coatings on treated timbers. As competing water vapour from the environment could reduce the effective uptake of lindane, wet (non-activated) materials with preadsorbed water were compared with activated and silinised materials. Commercial pesticide formulations often use toluene as solvent, so this work also investigated the extent to which toluene affected lindane sorption. Liquid phase uptake measurements were analysed by FTIR spectroscopy. Both lindane and toluene were sorbed by the activated, wet and silinised forms of the NaY zeolite, with lindane able to displace approximately two-thirds and toluene approximately half of the preadsorbed water of wet NaY. Silination significantly reduced the uptake of both lindane and toluene, and this was more pronounced for the larger lindane molecule. It was found from liquid phase competitive studies that activated NaY always preferred lindane to toluene, but that selectivity for lindane on wet NaY depended on its concentration in the original solution. Gas chromatography showed that lindane was strongly retained on both NaY and MCM-41, but that even at the lowest temperatures MCM-41 was not able to retain toluene. Thermal gravimetric analysis of the gas phase uptakes of toluene and lindane were similar and independent of whether the zeolite was in its activated or wet form, with silination giving only a slight reduction in uptake. Uptake of lindane and toluene on NaY zeolite was more than twice that on MCM-41.


References

  1. P. Murray, The Building Surveyor, 1992, September, pp. 7–8 Search PubMed.
  2. A. J. Dobbs and N. Williams, Environ. Pollut. (Series B), 1983, 6, 271 Search PubMed.
  3. T.-A. Morris and K. Huddersman, in preparation.
  4. I. F. J. Vankelecom, C. Dotremont, M. Morobe, J.-B. Uytterhoeven and C. Vandecasteele, J. Phys. Chem., 1997, 101, 2154 Search PubMed.
  5. C. Dotremont, B. Braabants, K. Geeroms, J. Melvis and C. Vandecasteele, J. Membr. Sci., 1995, 104, 109 CrossRef CAS.
  6. B. Clausse, B. Garrot, C. Cornier and C. Paulin, Microporous Mesoporous Mater., 1998, 25, 169 CrossRef CAS.
  7. H.-T. Shu, D. Li, A. A. Scala and Y. H. Ma, Separ. Purif. Technol., 1997, 11, 27 Search PubMed.
  8. L. Alvarez-Cohen, P. L. Carty and P. V. Roberts, Environ. Sci. Technol., 1993, 27, 2141 CAS.
  9. D. W. Brek, Zeolite Molecular Sieves, John Wiley & Sons, Chichester, 1974 Search PubMed.
  10. W. M. Meier, D. H. Olson and Ch. Baerlocker, ‘Atlas of zeolitestructure types’, Zeolites, 1996, 17, 105.
  11. Estimated by the authors from bond lengths and covalent radii.
  12. A. R. George, C. M. Freeman and C. R. A. Catlow, Zeolites, 1996, 17, 466 CrossRef CAS.
  13. D. W. Breck, W. G. Eversole, R. M. Milton, T. B. Reed and T. L. Thomas, J. Am. Chem. Soc., 1956, 78, 5963 CrossRef CAS.
  14. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicsz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Shlenke, J. Am. Chem. Soc., 1992, 114, 10834 CrossRef CAS.
  15. R. Glaser, R. Roesky, T. Boger, G. Eigenberger, S. Ernst and J. Weitkamp, Stud. Surf. Sci. Catal., 1997, 105, 695.
  16. S. Namba, N. Sugiyama, M. Yamai, I. Shimamura, S. Aoki and J. Izumi, Stud. Surf. Sci. Catal., 1997, 105, 1891.
  17. J. Janchen, M. Busio, M. Hintze, H. Stach and J. H. C. van Hooff, Stud. Surf. Sci. Catal., 1997, 105, 1731.
  18. X. S. Zhao and G. Q. Lu, J. Phys. Chem. B, 1998, 102, 1556 CrossRef CAS.
  19. F. P. Matthae, W. D. Basler and H. Lechert, Stud. Surf. Sci. Catal., 1998, 117, 301 CAS.
  20. P. J. Branton, K. S. W. Sing and J. W. White, J. Chem. Soc., Faraday Trans., 1997, 93, 2337 RSC.
  21. I. M. Dahl, E. Myhrvold, A. Slagtern and M. Stocker, Adsorpt. Sci. Technol., 1997, 15, 289 Search PubMed.
  22. N. L. Singleton, K. D. Huddersman and M. I. Needham, J. Chem. Soc., Faraday Trans., 1998, 94, 3777 RSC.
  23. G. Engelhardt, High Resolution Solid-State NMR of Silicates and Zeolites, John Wiley & Sons, Chichester, 1986 Search PubMed.
  24. E. F. Vansant, Pore Size Engineering in Zeolites, John Wiley & Sons, Chichester, 1990, p. 47 Search PubMed.
  25. R. B. Borade and A. Clearfield, Catal. Lett., 1995, 31, 267 CAS.
  26. S. Inagaki, S. Ogata, Y. Gote and Y. Fukushima, Stud. Surf. Sci. Catal., 1998, 117, 65 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.