Fragile arrangements of self-organized J aggregates of pseudoisocyanine dye at a glass/solution interface

(Note: The full text of this document is currently only available in the PDF Version )

Hiroshi Yao, Ren Kawabata, Hiroshi Ikeda and Noboru Kitamura


Abstract

Self-organized J aggregates of a 1,1′-diethyl-2,2′-cyanine (pseudoisocyanine: PIC) dye produced at a soda lime glass/solution interface (JL aggregate) were characterized. The dye concentration dependence of JL aggregation showed a quasi-adsorption behavior owing to formation of the aggregates at anionic sites on the glass surface. An increase in the PIC concentration accompanied a slight red shift of the JL band as well as a decrease in the fluorescence lifetime. The results suggested that the JL aggregate possessed relatively fragile arrangements. In order to discuss the structures of the aggregates, we proposed a new approach to estimating the number of interacting molecules (N) in the aggregate on the basis of a thermodynamic consideration for self-association of molecules and an adsorption isotherm. Then, we estimated N to be 6 in the JL aggregates when N is assumed to be unchanged. According to extended dipole model calculations for a brickstone or staircase structure with N=6, the concentration dependence of the optical properties of the JL band was reasonably explained by assuming loose and fragile arrangements of PIC molecules in the aggregates. The amorphous solid surface of the glass was shown to be the origin for fragile arrangements of PIC molecules in the JL aggregates.


References

  1. E. E. Jelley, Nature, 1936, 138, 1009 CrossRef CAS.
  2. G. Scheibe, Angew. Chem., 1936, 49, 563 Search PubMed.
  3. M. Kasha and E. G. McRae, in Physical Processes in Radiation Chemistry, ed. L. Augenstein, Academic Press, New York, 1964 Search PubMed.
  4. W. West, P. B. Gilman and P. B. Gilman, Jr., Photogr. Sci. Eng., 1969, 13, 221 Search PubMed.
  5. S. Siebentritt, S. Guenster and D. Meissner, Synth. Met., 1991, 41, 1173 CAS.
  6. P. M. Borsenberger and D. C. Hoesterey, J. Appl. Phys., 1980, 51, 4248 CrossRef CAS.
  7. F. C. Spano and S. Mukamel, Phys. Rev. A, 1989, 40, 5783 CrossRef CAS.
  8. S. De Boer and D. A. Wiersma, Chem. Phys. Lett., 1990, 165, 45 CrossRef CAS.
  9. R. Gadonas, R. Danielius, A. Piskarskas and S. Rentsch, Bull. Acad. Sci. USSR Phys., 1983, 47, 151 Search PubMed.
  10. S. De Boer, K. J. Vink and D. A. Wiersma, Chem. Phys. Lett., 1987, 137, 99 CrossRef CAS.
  11. P. O. J. Scherer and S. F. Fischer, Chem. Phys., 1984, 86, 269 CrossRef CAS.
  12. E. Daltrozzo, G. Scheibe, K. Gschwind and F. Haimerl, Photogr. Sci. Eng., 1974, 18, 441 Search PubMed.
  13. J-Aggregates, ed. T. Kobayashi, World Scientific, Singapore, 1996 Search PubMed.
  14. G. Scheibe, Angew. Chem., 1939, 52, 631 Search PubMed.
  15. V. Czikkely, H. D. Försterling and H. Kuhn, Chem. Phys. Lett., 1970, 6, 11 CrossRef CAS.
  16. A. A. Muenter, D. V. Brumbaugh, J. Apolito, L. A. Horn, F. C. Spano and S. Mukamel, J. Phys. Chem., 1992, 96, 2783 CrossRef CAS.
  17. S. Sugiyama, H. Yao, O. Matsuoka, R. Kawabata, N. Kitamura and S. Yamamoto, Chem. Lett., 1999, 37 CAS.
  18. H. Yao, H. Ikeda and N. Kitamura, J. Phys. Chem. B, 1998, 102, 7691 CrossRef CAS.
  19. H. Yao, H. Ikeda, R. Kawabata and N. Kitamura, J. Photochem. Photobiol. A, 1999, 124, 147 CrossRef CAS.
  20. D. A. Higgins, J. Kemiro, D. A. Vanden Bout and P. F. Barbara, J. Am. Chem. Soc., 1996, 118, 4049 CrossRef CAS.
  21. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1985 Search PubMed.
  22. V. Sundström, T. Gillbro, R. A. Gadonas and A. Piskarskas, J. Chem. Phys., 1988, 89, 2754 CrossRef.
  23. H. Fidder, J. Knoester and D. A. Wiersma, J. Chem. Phys., 1991, 95, 7880 CrossRef CAS.
  24. Y. Toyozawa, Prog. Theor. Phys., 1958, 20, 53 Search PubMed.
  25. I. Renge and U. P. Wild, J. Phys. Chem. A, 1997, 101, 7977 CrossRef CAS.
  26. R. K. Bauer, P. de Mayo, E. R. Ware and K. C. Wu, J. Phys. Chem., 1982, 86, 3781 CrossRef CAS.
  27. A. W. Adamson, Physical Chemistry of Surfaces, John Wiley & Sons, New York, 5th edn., 1990 Search PubMed.
  28. W. J. Harrison, D. L. Mateer and G. J. T. Tiddy, Faraday Discuss., 1996, 104, 139 RSC.
  29. H. Stegemeyer and F. Stöckel, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 9 CAS.
  30. Although we examined the effect of α on the simulation curve, α was almost insensitive to the shape of the curve. On the other hand, the shape of the coverage–[dye] curve was highly dependent on N. Therefore, it is worth noting that with the present approach it might in general be difficult to fit a steep coverage–[dye] curve.
  31. We could not observe morphologies of the JL aggregate at the soda limelass/solution interface by tapping-mode atomic force microscopy (AFM). This is probably due to weak interactions between PIC molecules and the glass surface (fragile arrangements) and/or a small aggregation number of the aggregates. The results are different from the J aggregate at a mica/solution interface; the aggregates possess a three-dimensional disk structure as reported in ref. 17. Thus, we assumed that the JL aggregates had a two-dimensional structure at the interface as often discussed in the literature (ref. 15). Actually, the effect of the dimensionality factor on the shape of the simulation curve was very small when N > 10.
  32. V. Czikkely, H. D. Försterling and H. Kuhn, Chem. Phys. Lett., 1970, 6, 207 CrossRef CAS.
  33. A ladder structure of J aggregates has also been proposed. However, it is less suitable to explain the shift energy of the aggregate as compared to the present discussion based on the staircase or brickstone arrangement as discussed in ref. 32.
  34. H. Nakahara, K. Fukuda, D. Möbius and H. Kuhn, J. Phys. Chem., 1986, 90, 6144 CrossRef CAS.
  35. H. Yao, S. Sugiyama, R. Kawabata, H. Ikeda, O. Matsuoka, S. Yamamoto and N. Kitamura, J. Phys. Chem. B, 1999, 103, 4452 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.