Transformation of tetragonal zirconia phase to monoclinic phase in the presence of Fe3+ ions as probes: an EPR study

(Note: The full text of this document is currently only available in the PDF Version )

Joseph Matta, Jean-François Lamonier, Edmond Abi-Aad, Elena A. Zhilinskaya and Antoine Aboukaïs


Abstract

EPR was mainly used to study the morphological, textural and structural behavior of zirconium hydroxide [ZrO(OH)2] with respect to calcination under air at different temperatures. For calcination temperatures less than 700°C, the tetragonal and monoclinic phases of the solid were present. In this range of temperatures an EPR signal with gxx=1.9755, gyy=1.9720 and gzz=1.9562 was observed and attributed to Zr3+ ions located in octahedral sites with strong tetragonal distortion. The dehydration of OH- groups from solids could be responsible for the Zr4+ reduction into Zr3+ ions. A second signal, centered at g=2.0018, was also observed and assigned to trapped single electrons located in oxygen vacancies of ZrO2. A third signal with gxx=2.0040, gyy=2.0082 and gzz=2.0334 was attributed to adsorbed O2- species. Finally, a fourth signal obtained at low magnetic field with different g values was attributed to Fe3+ ions located in sites with a purely rhombic field. For high calcination temperatures (>700°C), the tetragonal phase was completely transformed into monoclinic phase. In this phase, the trapped single electrons and the adsorbed O2- species disappeared whereas the number of Zr3+ ions increases when compared to that obtained at lower calcination temperatures. This increase could be related to the reduction of Zr4+ by the trapped single electrons and the formation of the monoclinic phase which stabilizes the Zr3+ ions. In this latter phase, the Fe3+ ions are located in sites which have the same environmental symmetry than in tetragonal phase but with specific EPR parameter values.


References

  1. T. Yamaguchi, Catal. Today, 1994, 20, 199 CrossRef CAS.
  2. G. L. Clark and D. H. Reynolds, Z. Kristallogr., 1937, 98, 299.
  3. E. D. Whitney, Trans. Faraday Soc., 1965, 61, 1991 RSC and references therein.
  4. R. C. Garvie, J. Phys. Chem., 1965, 69, 1238 CrossRef CAS.
  5. Y. Murase and E. Kato, Nippon Kagaku Kaishi, 1978, 367 CAS.
  6. Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, Fl, 77th edn., 1996–1997, pp. 11–16 Search PubMed.
  7. R. T. Weber, W IN-EPR SIMFONIA manual, Ver. 1.2, Bruker Instruments, Inc., 1995, Billerica, MA and references therein Search PubMed.
  8. L. M. Zaitsev, Zh. Neorg. Khim., 1966, 11, 1684 Search PubMed.
  9. A. Clearfield, G. P. D. Serrette and A. H. Khazi-Syed, Catal. Today, 1994, 20, 295 CrossRef CAS and references therein V. Parvulescu, S. Coman, P. Grange and V. I. Parvulescu, Appl. Catal., 1999, 176(1), 27 Search PubMed.
  10. R. C. Garvie and P. S. Nicholson, J. Am. Ceram. Soc., 1972, 55(6), 303 CAS.
  11. T. Mitsuhashi, M. Ichihara and U. Tatsuke, J. Am. Ceram. Soc., 1974, 57(2), 97.
  12. V. G. Keramidas and W. B. White, J. Am. Ceram. Soc., 1974, 57, 22 CAS.
  13. M. J. Torralvo, M. A. Alario and J. Soria, J. Catal., 1984, 86, 473 CrossRef CAS; C. Morterra, E. Giamello, E. Orio and M. Volante, J. Phys. Chem., 1990, 94, 3111 CrossRef CAS.
  14. F. R. Chen, G. Coudurier, J. F. Joly and J. C. Vedrine, J. Catal., 1993, 143, 616 CrossRef CAS.
  15. I. V. Bobricheva, I. A. Stavitsky, V. K. Yermolaev, N. S. Kotsarenko, V. P. Shmachkova and D. I. Kochubey, Catal. Lett., 1998, 56, 23 CrossRef CAS.
  16. G. L. Markaryan, L. N. Ikryannikova, G. P. Muravieva, A. O. Turakulova, B. G. Kostyuk, E. V. Lunina, V. V. Lunin, E. Zhilinskaya and A. Aboukaïs, Colloids Surf. A, 1999, 147, 435 CrossRef.
  17. T. Lopez, F. Tzompantzi, J. Navarrete, R. Gomez, J. L. Boldu, E. Munoz and O. Novaro, J. Catal., 1999, 181, 285 CrossRef CAS.
  18. M. Che and A. Tench, J. Adv. Catal., 1983, 32, 1 Search PubMed.
  19. X. Zhang and K. Klabunde, J. Inorg. Chem., 1992, 31, 1706 Search PubMed.
  20. E. Abi-aad, R. Bechara, J. Grimblot and A. Aboukaïs, Chem. Mater., 1993, 5, 793 CrossRef CAS.
  21. V. I. Dimza, Phys. Status Solidi A, 1993, 140, 543 CAS.
  22. M. D. Glinchuk, V. Skorokhod, I. P. Bykov, V. Dimza and E. Cernoskova, J. Phys. Condens. Matter, 1994, 6, 3421 CrossRef CAS.
  23. P. B. Ayscough, Electron Spin Resonance in Chemistry. Methuen & Co. Ltd., London, 1967 Search PubMed.
  24. E. A. Zhilinsaya, V. N. Lazukin, I. V. Chepeleva and V. V. Osiko, Phys. Status Solidi B, 1980, 98, 419.
  25. K. K. Ermakovich, V. N. Lazukin, V. M. Tatarintsev and I. V. Chepeleva, Fiz. Tverd. Tela (S.-Peterburg), 1977, 19, 3488 Search PubMed.
  26. G. Bacquet, J. Dugas, C. Escribe and A. Rauanet, J. Solid State Chem., 1976, 19, 251 CAS.
  27. G. Bacquet, J. Dugas and C. Escribe, Phys. Status Solidi B, 1971, 47, 177 CAS.
  28. D. L. Griscom, J. Non-Cryst. Solids, 1980, 40, 211 CAS.
  29. R. Aasa and T. Vänngård, Ark. Kemi, 1965, 24(18), 331 Search PubMed.
  30. R. Aasa, J. Chem. Phys., 1970, 52(8), 3919 CrossRef CAS.
  31. R. D. Dowsing and J. F. Gibson, J. Chem. Phys., 1969, 50(1), 294 CrossRef CAS.
  32. C. M. Brodbeck, J. Non-Cryst. Solids, 1980, 40(1-3), 305 CAS.
  33. M. I. Scullane, L. K. White and N. D. Chasteen, J. Magn. Res., 1982, 47, 383 CAS.
  34. J. M. Schreurs, J. Chem. Phys., 1978, 69, 211 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.