Raman and IR spectroscopic studies of the interaction between counterion and polar group in self-assembled systems of AOT-homologous “sodium dialkyl sulfosuccinates’'

(Note: The full text of this document is currently only available in the PDF Version )

Yasuyuki Nagasoe, Naoki Ichiyanagi, Hirofumi Okabayashi, Sandrine Nave, Julian Eastoe and Charmian J. O'Connor


Abstract

Headgroup–counterion interactions have been studied for a homologous series of sodium dialkyl sulfosuccinates (SDAS) with propyl, butyl, hexyl, octyl, decyl, undecyl and dodecyl chains as Aerosol-OT analogues. Raman scattering and IR absorption spectra were recorded and compared with those for dimethyl sulfosuccinate monohydrate, diethyl sulfosuccinate trihydrate and diheptyl sulfosuccinate dihydrate, whose crystal structures are known. The spectral features of the C2O and SO3- stretch modes directly reflect the interaction between the polar group and the Na+ ion and depend strongly upon the environment of hydration. The results may be summarized as follows. For the SDAS monohydrates in the solid state, there exists a strong interaction between the β C2O group and the Na+ ion, as a consequence of coordination of the β C2O to the Na+ ion, resulting in splitting of the C2O stretch modes. In particular, the common Raman (IR) bands observed at 1705–1707 (1706–1708) and 1730–1732 (1732–1733) cm-1 may be assigned to the β C2O group coordinated to the Na+ counterion and the hydrated α C2O group, respectively. The extent of splitting of these bands is a measure of the strength of this C2O···Na+ interaction. Coordination of the β C2O to the Na+ ion also affects the C2O deformation modes of the O–C2O linkage. An increased hydration number and longer hydrocarbon chains induce a weak interaction between the C2O group and the Na+ ion. The SO3-···Na+ interaction reflects the SO3- stretch modes, depending upon the extent of hydration. Furthermore, for the SDAS samples in the organic and aqueous microphases, Raman (IR) bands characteristic of the C2O and SO3-1 groups have been used successfully to account for the interaction between the polar group and the Na+ ion.


References

  1. C. J. O'Connor and T. D. Lomax, in Surfactants in Solution, ed. K. L. Mittal 1and B. Lindman, Plenum Press, New York, 1984 Search PubMed.
  2. J. H. Fendler, Membrane Mimetic Chemistry, Wiley, New York, 1982, ch. 3 Search PubMed.
  3. C. J. O'Connor, in Interfacial Phenomena in Apolar Media, ed. H.-F. Eicke and G. D. Parfitt, Marcel Dekker, New York, 1987, ch. 5 Search PubMed.
  4. M.-C. Bellissent-Funel and J. C. Dore, Hydrogen Bond Networks., Kluwer Academic, Dordrecht/Boston/London, 1994 Search PubMed.
  5. P. Ekwall, L. Mandell and K. Fontell, J. Colloid Interface Sci., 1970, 33, 215 CAS.
  6. M. Wong, J. K. Thomas and M. Gratzell, J. Am. Chem. Soc., 1976, 98, 2391 CrossRef CAS.
  7. A. Yoshino, H. Okabayashi and T. Yoshida, J. Phys. Chem., 1994, 98, 7036 CrossRef CAS.
  8. A. Yoshino, H. Okabayashi, T. Uchida, T. Ogasawara, T. Yoshida and C. J. O'Connor, J. Phys. Chem., 1996, 100, 8418 CrossRef CAS.
  9. Y. Komada, A. Yoshino and H. Okabayashi, 1998, Abstract (in Japanese) for the 37th Symposium on Nuclear Magnetic Resonance, Japan, Tokyo, 1998, p. 193 Search PubMed.
  10. H. MacDonald, B. Bedwell and E. Gulari, Langmuir, 1986, 2, 704 CrossRef CAS.
  11. A. D'Aprano, A. Lizzio, V. T. Liveri, F. Aliotta, C. Vasi and P. Migliardo, J. Phys. Chem., 1988, 92, 4436 CrossRef.
  12. G. Onori and A. Santucci, J. Phys. Chem., 1993, 97, 5430 CrossRef CAS.
  13. G. Giammona, F. Goffredi, V. T. Liveri and G. Vassallo, J. Colloid Interface Sci., 1992, 154, 411 CAS.
  14. T. K. Jain, M. Varshney and A. Maitra, J. Phys. Chem., 1989, 93, 7409 CrossRef CAS.
  15. J. P. Blitz, J. L. Fulton and R. D. Smith, Appl. Spectrosc., 1989, 43, 812 CAS.
  16. P. D. Moran, G. A. Bowmaker, R. P. Cooney, J. R. Bartlett and J. L. Woolfrey, J. Mater. Chem., 1995, 5, 295 RSC.
  17. P. D. Moran, G. A. Bowmaker and R. P. Cooney, Langmuir, 1995, 11, 738 CrossRef CAS.
  18. Y. Nagasoe, N. Hattori, H. Masuda, H. Okabayashi and C. J. O'Connor, J. Mol. Struct., 1998, 449, 61 CrossRef CAS.
  19. A. N. Maitra and H. F. Eicke, J. Phys. Chem., 1981, 85, 2687 CrossRef CAS.
  20. J. Lucassen and M. G. B. Drew, J. Chem. Soc., Faraday Trans. 1, 1987, 83, 3093 RSC.
  21. J. M. Corkill, J. F. Goodman and T. Walker, Trans. Faraday Soc., 1965, 61, 589 RSC.
  22. E. F. William, N. T. Woodberry and J. K. Dixon, J. Colloid Sci., 1957, 12, 452 Search PubMed.
  23. A. Yoshino, N. Sugiyama, H. Okabayashi, K. Taga, T. Yoshida and O. Kamo, Colloids Surf., 1992, 67, 67 CrossRef CAS.
  24. B. Roux and M. J. Karplus, Computat. Chem., 1995, 16, 690 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.