Effects of lactam ring size on the thermodynamics of hydrogen bonding in CCl4 solutions: experimental and abinitio studies

(Note: The full text of this document is currently only available in the PDF Version )

Mark Adler, Brian Laughlin and Shannon G. Lieb


Abstract

The thermodynamic properties of hydrogen bonding among lactams with ring sizes n=4, 5 and 6 were investigated using infrared spectroscopy of the fundamental N–H stretching frequencies of both the monomer and dimer species. The results are consistent with a predominantly monomer–dimer equilibrium with the dimer having C2 symmetry. The thermodynamic properties (in CCl4) for the four-, five- and six-membered lactam rings are Kd (at 25°C)=12.4(9), 24(6) and 25(3), ΔHd (kJ mol-1)=-30(2), -30(1) and -28(2) and ΔSd (J mol-1 K-1)=-79(4), -74(3) and -67(5), respectively (precisions in parentheses). The experimentally determined thermodynamic properties are compared with abinitio calculations (6–31G** basis set) which represent gas-phase results. The comparison of these two approaches yields a picture which is consistent with the notion that the primary effect of ring size is an entropy of solvation effect and not the enthalpy of hydrogen bonding between the monomer units.


References

  1. M. A. Palenfox, J. L. Nunez and M. Gil, J. Phys. Chem., 1995, 99, 1124 CrossRef.
  2. T. Koyama and A. Wakisaka, J. Chem. Soc., Faraday Trans., 1997, 93, 3813 RSC.
  3. C. Y. S. Chen and C. A. Swenson, J. Phys. Chem., 1968, 73, 1363.
  4. J. A. Walmsley, J. Phys. Chem., 1978, 82, 2031 CrossRef CAS.
  5. S. E. Krikorian, J. Phys. Chem., 1982, 86, 1875 CrossRef CAS.
  6. N. E. Triggs and J. J. Valentini, J. Phys. Chem., 1992, 96, 6922 CrossRef CAS.
  7. H. Susi, S. N. Timasheff and T. S. Ard, J. Biol. Chem., 1964, 239, 3051 CAS.
  8. H. Susi and T. S. Ard, Arch. Biochem. Biophys., 1966, 117, 147 CAS.
  9. S. Lieb, J. Chem. Educ., 1997, 74, 1008 CAS.
  10. Gaussian 94, Revision E.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. HeadGordon, C. Gonzalez and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
  11. J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Pittsburgh, PA, 2nd edn., 1995–96 Search PubMed.
  12. K.-M. Marstokk, H. Mollendal, S. Saundal and E. Uggerud, Acta Chem. Scand., 1989, 43, 351 CAS.
  13. (a) Q.-C. Yang, P. Seiler and J. D. Dunitz, Acta Crystallogr., Sect. C, 1987, 43, 565 CrossRef (β-lactam); (b) L. Norskov-Lawritsen, H.-B. Burgi, P. Hofmann and H. R. Schmidt, Helv. Chim. Acta, 1985, 68, 76 CrossRef (γ-lactam); (c) D. van der Helm and J. D. Ekstrand, Acta Crystallogr., Sect. B, 1979, 35, 3101 CrossRef (δ-lactam).
  14. J. M. Purcell, H. Susi and J. R. Cavanaugh, Can. J. Chem., 1969, 47, 3655 CAS.
  15. R. F. W. Hopmann, J. Phys. Chem., 1974, 78, 2341 CrossRef CAS.
  16. J. A. Walmsley, E. J. Jacob and H. B. Thompson, J. Phys. Chem., 1976, 80, 2745 CrossRef CAS.
  17. G. Montando, S. Caccamese and A. Recca, J. Phys. Chem., 1975, 79, 1554 CrossRef.
  18. C. Josefiak and G. M. Schneider, J. Phys. Chem., 1979, 83, 2126 CrossRef CAS.
  19. F. Huisenken, A. Kulcke, C. Laush and J. Lisy, J. Chem. Phys., 1991, 93, 3924 CrossRef CAS.
  20. J. Dixon, W. George, Md. F. Hossain, R. Lewis and J. Price, J. Chem. Soc., Faraday Trans., 1997, 93, 3611 RSC.
  21. F. Hagemeister, C. Gruenloh and T. Zwier, J. Phys. Chem. A, 1998, 102, 82 CrossRef CAS.
  22. F. Schwager, E. Marand and R. Davis, J. Phys. Chem., 1996, 100, 19268 CrossRef CAS.
  23. B. Laughlin and S. Lieb, to be published.
  24. T. Miyazawa, J. Mol. Spectrosc., 1960, 4, 168 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.