What are the important factors determining the state of copper ion on various supports? Analysis using spectroscopic methods and adsorption calorimetry

(Note: The full text of this document is currently only available in the PDF Version )

Yasushige Kuroda, Toshinori Mori, Yuzo Yoshikawa, Shigeharu Kittaka, Ryotaro Kumashiro and Mahiko Nagao


Abstract

The important factors that determine the state of copper ion supported on the SiO2·Al2O3, SiO2 and ZSM-5 samples have been elucidated by using various spectroscopic techniques and adsorption calorimetry. When CO was adsorbed on the copper ion supported SiO2·Al2O3 (Cu/SiO2·Al2O3) sample or the copper ion exchanged ZSM-5 (CuZSM-5) sample which had been evacuated at 873 K in advance, a band was observed at around 2155 cm-1 which can be assigned to the CO species adsorbed onto the monovalent copper ion in these samples. In the case of CO adsorption on the copper ion deposited SiO2 (Cu/SiO2) sample, the band due to the adsorbed CO species appeared at 2132 cm-1. The differential heat of adsorption (Hd) of CO on Cu/SiO2·Al2O3 gave a value of ca. 100 kJ mol-1 at the initial adsorption stage and it gradually decreased with increasing amount adsorbed. The same relationship in the Hd–νCO (wavenumber of absorption band due to the C–O stretching vibration) plots was observed in the systems of Cu/SiO2·Al2O3–CO and CuZSM-5–CO, which indicates that the same σ bonding interaction is operative in these systems. In the case of CO adsorption on the Cu/SiO2 sample, the amount adsorbed is too small to get meaningful values of the adsorption heat for the discussion of the bonding nature between the copper ions and CO molecules, and we speculated that the same σ-bonding interaction is operative. The existence of the Brönsted acid sites on the original proton-type SiO2·Al2O3 and ZSM-5 samples was confirmed by the IR spectra using CO as a probe molecule and by the measurement of solid NMR spectra. These data provide an explanation for the appearance of an IR band (2155 cm-1) due to the CO species adsorbed on the Cu/SiO2·Al2O3 and CuZSM-5 samples. The existence of Brönsted acid sites, due to the existence of Al in the lattice, can be regarded as an important factor in their role as catalysts in the various reactions. The state of copper ions that act as the active sites in the catalytic reactions is different, depending on the Si:Al ratio of the sample; the Cu2+ species supported on the SiO2·Al2O3 sample having a lower Si:Al ratio resist reduction, because the exchanged divalent ions may occupy two exchangeable sites simultaneously. It seems that the higher Si:Al ratio is a necessary condition for keeping an amount of copper ion deposited on the support sufficient for redox reaction as well as for acting as a good NO-decomposition catalyst. From the spectroscopic observations such as IR, emission, X-ray absorption, and electron paramagnetic resonance spectra, it is also found that the copper ions on the SiO2 sample reduced in the evacuation process are dispersed appropriately in Cu2O-like sites.


References

  1. M. Che and C. O. Bennett, Adv. Catal., 1989, 36, 55 CAS.
  2. W. M. H. Sachtler and Z. Zhang, Adv. Catal., 1993, 39, 129 CAS.
  3. D. W. Goodman, Chem. Rev., 1995, 95, 523 CrossRef CAS.
  4. J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., Int. Ed. Engl., 1999, 38, 56 CrossRef CAS.
  5. (a) J. Y. Carriat, M. Che, M. Kermarec, M. Verdaguer and A. Michalowicz, J. Am. Chem. Soc., 1998, 120, 2059 CrossRef CAS; (b) P. Burattin, M. Che and C. Louis, J. Phys. Chem. B, 1998, 102, 2722 CrossRef CAS.
  6. H. Miessner, J. Am. Chem. Soc., 1994, 116, 11522 CrossRef CAS.
  7. M. Iwamoto, H. Furukawa, Y. Mine, F. Uemura, S. Mikuriya and S. Kagawa, J. Chem. Soc., Chem. Commun., 1986, 1272 RSC.
  8. M. Iwamoto, H. Yahiro, N. Mizuno, W.-X. Zhang, Y. Mine, H. Furukawa and S. Kagawa, J. Phys. Chem., 1992, 96, 9360 CrossRef CAS.
  9. J. Vayon and W. K. Hall, J. Phys. Chem., 1993, 97, 1204 CrossRef CAS.
  10. (a) M. Schelef, Catal. Lett., 1992, 15, 305 CrossRef; (b) M. Schelef, Chem. Rev., 1995, 95, 209 CrossRef CAS.
  11. (a) D.-J. Liu and H. J. Robata, Catal. Lett., 1993, 21, 291 CAS; (b) D.-J. Liu and H. Robata, J. Appl. Catal. B, 1994, 4, 155 Search PubMed.
  12. E. S. Shpiro, W. Grünert, R. W. Joyner and G. N. Baeva, Catal. Lett., 1994, 24, 159 CAS.
  13. W. Grünert, N. W. Hayes, R. W. Joyner, E. S. Shpiro, M. R. H. Siddiqui and G. N. Baeva, J. Phys. Chem., 1994, 98, 10832 CrossRef.
  14. S. C. Larssen, A. Aylor, A. T. Bell and J. A. Reimer, J. Phys. Chem., 1994, 98, 11533 CrossRef CAS.
  15. (a) G. D. Lei, B. J. Adelman, J. Sárkány and W. M. H. Sachtler, Appl. Catal. B, 1995, 5, 245 CrossRef CAS; (b) T. Beutel, J. Sárkány, G.-D. Lei, J. Y. Yan and W. M. H. Sachtler, J. Phys. Chem., 1996, 100, 845 CrossRef CAS.
  16. Y. Kuroda, S. Konno, K. Morimoto and Y. Yoshikawa, J. Chem. Soc., Chem. Commun., 1993, 18 RSC.
  17. (a) Y. Kuroda, Y. Yoshikawa, S. Konno, H. Hamano, H. Maeda, R. Kumashiro and M. Nagao, J. Phys. Chem., 1995, 99, 10621 CrossRef CAS; (b) Y. Kuroda, H. Maeda, Y. Yoshikawa, R. Kumashiro and M. Nagao, J. Phys. Chem. B, 1997, 101, 1312 CrossRef CAS.
  18. G. Spoto, S. Bordiga, G. Ricchiardi, D. Scarano, A. Zecchina and F. Geobaldo, J. Chem. Soc., Faraday Trans., 1995, 91, 3285 RSC.
  19. Y. Kuroda, Y. Yoshikawa, S. Emura, R. Kumashiro and M. Nagao, J. Phys. Chem. B, 1999, 103, 2155 CrossRef CAS.
  20. W. F. Schneider, K. C. Hass, R. Ramprasad and J. B. Adams, J. Phys. Chem., 1996, 100, 6032 CrossRef CAS.
  21. K. C. Hass and W. F. Schneider, J. Phys. Chem., 1996, 100, 9292 CrossRef CAS.
  22. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 17582 CrossRef CAS.
  23. M. L. Jacomo, G. Fierro, R. Dragone, X. Feng, J. d'Itri and W. K. Hall, J. Phys. Chem. B, 1997, 101, 1979 CrossRef.
  24. M. Iwamoto and H. Yahiro, Catal. Today, 1994, 22, 5 CrossRef CAS.
  25. A. V. Kucherov, J. L. Gerlock, H.-W. Jen and M. Schelef, J. Phys. Chem., 1994, 98, 4892 CrossRef CAS.
  26. Y. Kuroda, R. Kumashiro, T. Yoshimoto and M. Nagao, Phys. Chem. Chem. Phys., 1999, 1, 649 RSC.
  27. S. Hu, J. A. Reimer and A. T. Bell, J. Phys. Chem. B, 1997, 101, 1869 CrossRef CAS.
  28. S. Imai, K. Fujisawa, T. Kobayashi, N. Shirasawa, H. Fujii, T. Yoshimura, N. Kitajima and Y. Moro-oka, Inorg. Chem., 1998, 37, 3066 CrossRef CAS.
  29. D. F. Cox and K. H. Schulz, Surf. Sci., 1991, 249, 138 CrossRef CAS.
  30. S. V. Didziulis, K. D. Butcher, S. L. Cohen and E. I. Solomon, J. Am. Chem. Soc., 1989, 111, 7110 CrossRef CAS.
  31. E. I. Solomon, P. M. Jones and J. A. May, Chem. Rev., 1993, 93, 2623 CrossRef CAS.
  32. T. Matsuda, N. Ueno and M. Nagao, Netsu Sokutei, 1992, 19, 57 Search PubMed.
  33. T. Matsuda, H. Taguchi and M. Nagao, J. Thermal Anal., 1992, 38, 1835 Search PubMed.
  34. H. Maeda, J. Phys. Soc. Jpn., 1987, 56, 2777 Search PubMed.
  35. L.-S. Kau, D. J. Spira-Solomon, J. E. Penner-Hahn, K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 1987, 109, 6433 CrossRef CAS.
  36. L.-S. Kau, K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 1989, 111, 7103 CrossRef CAS.
  37. N. Kosugi, H. Kondoh, H. Tajima and H. Kuroda, Chem. Phys., 1989, 135, 149 CrossRef.
  38. G. Martens, P. Rabe, N. Schwentner and A. Werner, Phys. Rev. B, 1978, 17, 1481 CrossRef CAS.
  39. L. A. Grunes, Phys. Rev. B, 1983, 27, 2111 CrossRef CAS.
  40. (a) B. Wichterlová, J. Dedecek and A. Vondrová, J. Phys. Chem., 1995, 99, 1065 CrossRef CAS; (b) J. Dedecek, Z. Sobalik, T. Tvaruzkova, D. Kaucky and B. Wichterlová, J. Phys. Chem., 1995, 99, 16327 CrossRef CAS.
  41. (a) H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo and M. Che, J. Phys. Chem., 1996, 100, 397 CrossRef CAS; (b) M. Anpo, M. Matsuoka, Y. Shioya, H. Yamashita, E. Giamello, C. Morterra, M. Che, H. H. Patterson, S. Webber, S. Oullette and M. A. Fox, J. Phys. Chem., 1994, 98, 5744 CrossRef CAS.
  42. M. Anpo, T. Nomura, T. Kitao, E. Giamello, M. Che and M. A. Fox, Chem. Lett., 1991, 889 CAS.
  43. R. Kumashiro, Y. Kuroda and M. Nagao, J. Phys. Chem. B, 1999, 103, 89 CrossRef CAS.
  44. J. W. London and A. T. Bell, J. Catal., 1973, 31, 32 CrossRef CAS.
  45. G. J. Millar, C. H. Rochester and K. C. Waugh, J. Chem. Soc., Faraday Trans., 1991, 87, 1467 RSC.
  46. K. I. Hadjiivanov, M. M. Kantcheva and D. G. Klissurski, J. Chem. Soc., Faraday Trans., 1996, 92, 4595 RSC.
  47. H. Miessner, H. Landmesser, N. Jaeger and K. Richter, J. Chem. Soc., Faraday Trans., 1997, 93, 3417 RSC.
  48. D. Scarano, S. Bordiga, C. Lamberti, G. Spoto, G. Ricchiardi, A. Zecchina and C. O. Areán, Surf. Sci., 1998, 411, 272 CrossRef CAS.
  49. J. Sarkany and W. M. H. Sachtler, Zeolites, 1994, 14, 7 CrossRef CAS.
  50. T. P. Beebe, P. Gelin and J. T. Yates Jr., Surf. Sci., 1984, 148, 526 CrossRef CAS.
  51. (a) L. Heeribout, V. Semmer, P. Batamack, C. Dorémieux-Morin and J. Fraissard, Microporous Mesoporous Mater., 1998, 21, 565 CrossRef CAS; (b) L. Heeribout, C. Dorémieux-Morin, J.-P. Nogier, R. Vincent and J. Fraissard, Microporous Mesoporous Mater., 1998, 24, 101 CrossRef CAS and references therein.
  52. W. E. Garner, F. S. Stone and P. F. Tiley, Proc. R. Soc. London, Ser. A, 1952, 211, 472.
  53. Y. Y. Huang, J. Catal., 1973, 30, 187 CrossRef CAS.
  54. D. L. Roberts and G. L. Griffin, Appl. Surf. Sci., 1984, 19, 298 CrossRef CAS.
  55. R. C. Baetzold, J. Phys. Chem., 1985, 89, 4150 CrossRef CAS.
  56. S. V. Didzulis, K. D. Butcher, S. L. Cohen and E. I. Solomon, J. Am. Chem. Soc., 1989, 111, 7110 CrossRef CAS.
  57. M. A. Kohler, N. W. Cant, M. S. Wainwright and D. L. Trimm, J. Catal., 1989, 117, 188 CrossRef CAS.
  58. G. D. Borgard, S. Movik, P. Balaraman, T. W. Root and J. A. Dumesic, Langmuir, 1995, 11, 2065 CrossRef.
  59. A. Dandekar and M. A. Vannice, J. Catal., 1998, 178, 621 CrossRef CAS.
  60. Y. Kuroda, Y. Yoshikawa, R. Kumashiro and M. Nagao, J. Phys. Chem. B, 1997, 101, 6497 CrossRef CAS.
  61. A. Zecchina, S. Bordiga, C. Lamberti, G. Spoto, L. Carnelli and C. O. Areán, J. Phys. Chem., 1994, 98, 9577 CrossRef CAS.
  62. R. D. Shannon, Acta Crystallogr., 1976, A32, 751 CrossRef CAS.
  63. P. M. Jones, J. A. May and E. I. Solomon, Inorg. Chim. Acta, 1998, 275/276, 327 CrossRef.
  64. T. Bredow and G. Pacchioni, Surf. Sci., 1997, 373, 21 CrossRef CAS.
  65. M. Casarin and A. Vittadini, Surf. Sci., 1997, 387, L1079 CrossRef CAS.
  66. M. Fernandez-Garcia, J. C. Conesa and F. Illas, Surf. Sci., 1996, 349, 207 CrossRef CAS.
  67. A. Moen, D. G. Nicholson and M. Rønning, J. Chem. Soc., Faraday Trans., 1995, 91, 3189 RSC.
  68. K. C. Khulbe, A. Manogian, R. S. Mann and P. D. Grover, J. Catal., 1979, 56, 290 CAS.
  69. V. Bassetti, L. Burlamacchi and G. Martini, J. Am. Chem. Soc., 1979, 101, 5471 CrossRef CAS.
  70. H. Tominaga, Y. Ono and T. Keii, J. Catal., 1975, 40, 197 CrossRef CAS.
  71. G. Vierke, J. Chem. Soc., Faraday 1, 1973, 69, 1523 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.