Simplified equation of state for non-spherical hard particles: an optimized shape factor approach

(Note: The full text of this document is currently only available in the PDF Version )

Leonid V. Yelash, Thomas Kraska, Erich A. Müller and Norman F. Carnahan


Abstract

Based on an analysis using the Carnahan–Müller shape factor approach, mathematically simple and physically sound equations of state for fluids of non-spherical hard particles are proposed. The analysis has been performed using two versions of the statistical associating fluid theory for chains of hard-spheres, the hard convex body equation of state of Boublík and Nezbeda (Collect. Czech. Chem. Commun., 1986, 51, 2301) and the Flory-dimer model of Honnell and Hall (J. Chem. Phys., 1989, 90, 1841). The combination of the shape factor concept with the recently developed generalized biquadratic equation of state BQ75 gives access to simple biquadratic equations of state for different molecular shapes. With the combination of these two methods it is possible to simplify macroscopic models for molecular fluids. Furthermore the generalized method proposed here can be used to obtain simple equations of state from data generated by molecular simulations.


References

  1. E. A. Müller and N. F. Carnahan, Proceedings of AIChE Spring Müller National Meeting, February 25-29, 1996, New Orleans, LA. Search PubMed.
  2. N. F. Carnahan, E. A. Müller and J. Pikunic, Phys. Chem. Chem. Müller Phys., 1999, 1, 4259 Search PubMed.
  3. N. F. Carnahan, E. A. Müller and J. Pikunic, Proceedings of the Müller 13th Symposium on Thermophysical Properties, June 22-27, 1997, Boulder, Colorado Search PubMed.
  4. L. V. Yelash, T. Kraska and U. K. Deiters, J. Chem. Phys., 1999, 110, 3079 CrossRef CAS.
  5. L. V. Yelash and T. Kraska, Phys. Chem. Chem. Phys., 1999, 1, 2449 RSC.
  6. L. V. Yelash and T. Kraska, Phys. Chem. Chem. Phys., 1999, 1, 4315 RSC.
  7. I. Prigogine, N. Trappeniers and V. Mathot, Discuss. Faraday Soc., 1953, 15, 93 RSC.
  8. C. P. Bokis and M. D. Donohue, AIChE J., 1992, 38, 788 CAS.
  9. K. G. Honnell and C. K. Hall, J. Chem. Phys., 1989, 90, 1841 CrossRef CAS.
  10. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635 CrossRef CAS.
  11. I. Mills, T. Cvitaš, K. Homann, N. Kallay and K. Kuchitsu, Quantities, units and symbols in physical chemistry, IUPAC, Physical Chemistry Division, Blackwell Science Ltd., Oxford, 1993 Search PubMed.
  12. W. G. Chapman, G. Jackson and K. E. Gubbins, Mol. Phys., 1988, 65, 1057 CAS.
  13. T. Boublík and I. Nezbeda, Collect. Czech. Chem. Commun., 1986, 51, 2301 CAS.
  14. M. J. Maeso and J. R. Solana, Int. J. Thermophys., 1994, 15, 933 CAS.
  15. D. J. Tildesley and W. B. Streett, Mol. Phys., 1980, 41, 85 CAS.
  16. The program codes are available at http://www.uni-koeln.de/math-nat-fak/phchem/solve.html.
Click here to see how this site uses Cookies. View our privacy policy here.