A theoretical study of the thermal decomposition of fluoromethanethiol (CH2FSH)

(Note: The full text of this document is currently only available in the PDF Version )

Baoshan Wang, Hua Hou and Yueshu Gu


Abstract

A potential energy surface for the unimolecular decomposition of fluoromethanethiol has been reported at the G2(MP2) level of theory. Eleven product channels of CH2FSH were fully detailed. Five possible decomposition pathways of the CH3SF isomer were also examined. The calculations reveal that the four-center 1,2-HF elimination mechanism rather than the bond scission mechanism dominates the decomposition of both CH2FSH and CH3SF. The rate coefficients of the formation of HF at the high-pressure limit were deduced. The enthalpies of formation (ΔfH0° and ΔfH298°) of thirteen sulfur-containing species involved in the CH3SF system were predicted at the G2(MP2) level.


References

  1. K. Tsuchiya, K. Yamashita, A. Miyoshi and H. Matsui, J. Chem. Phys., 1996, 100, 17202 CrossRef CAS.
  2. M. L. McKee, J. Am. Chem. Soc., 1986, 108, 5059 CrossRef CAS.
  3. R. D. Zee and J. C. Stephenson, J. Chem. Phys., 1995, 102, 6946 CrossRef CAS.
  4. H. Arai, S. Kato and S. Koda, J. Phys. Chem., 1994, 98, 12 CrossRef CAS.
  5. A. H. Sehon and B. deB. Darwent, J. Am. Chem. Soc., 1954, 76, 4806 CrossRef CAS.
  6. K. K. Baldridge, M. S. Gordon and D. E. Johnson, J. Phys. Chem., 1987, 91, 4145 CrossRef CAS.
  7. C. R. Park and J. R. Wiesenfeld, Chem. Phys. Lett., 1991, 186, 170 CrossRef CAS.
  8. P. M. Aker, B. I. Niefer, J. J. Sloan and H. Heydtmann, J. Chem. Phys., 1987, 87, 203 CrossRef CAS.
  9. J. Baker and J. M. Dyke, J. Phys. Chem., 1994, 98, 757 CrossRef CAS.
  10. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. W. M. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Allaham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN 94, Gaussian Inc., Pittsburgh, PA, 1995 Search PubMed.
  11. C. Møller and M. S. Plesset, Phys. Rev., 1934, 46, 618 CrossRef CAS.
  12. W. J. Hehre, L. Radom, P. V. R. Schleyer and J. A. Pople, Abinitio Molecular Orbital Theory, John Wiley, New York, 1986 Search PubMed.
  13. C. Gonzalez and H. B. Schlegal, J. Chem. Phys., 1989, 90, 2154 CrossRef CAS.
  14. L. A. Curtiss, K. Raghvachari and J. A. Pople, J. Chem. Phys., 1993, 98, 1293 CrossRef CAS.
  15. L. A. Curtiss, K. Raghvachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 1997, 106, 1063 CrossRef CAS.
  16. J. L. Durant Jr. and C. M. Rohlfing, J. Chem. Phys., 1993, 98, 8031 CrossRef CAS.
  17. A. M. Mebel, K. Morokuma and M. C. Lin, J. Chem. Phys., 1995, 103, 7414 CrossRef CAS.
  18. I. W. M. Smith, Kinetics and Dynamics of Elementary Gas Reactions, Butterworths, London, 1980, ch. 4 Search PubMed.
  19. H. S. Johnston and J. Heicklen, J. Chem. Phys., 1962, 66, 532.
  20. D. G. Truhlar, J. Comput. Chem., 1990, 12, 266 CrossRef CAS.
  21. J. T. Herron, J. Phys. Chem., Ref. Data, 1987, 16, 1 CAS.
  22. B. Ruscic and J. Berkowitz, J. Chem. Phys., 1993, 98, 2568 CrossRef CAS.
  23. M. Roy and T. B. McMahon, Org. Mass Spectrom., 1982, 8, 392.
Click here to see how this site uses Cookies. View our privacy policy here.