Intervalence charge transfer and electronic transport in molten salts containing tantalum and niobium complexes of mixed valency

(Note: The full text of this document is currently only available in the PDF Version )

U. Stöhr and W. Freyland


Abstract

We report measurements of the electronic conductivity and partly the electronic mobility and optical absorption spectra in alkali halide melts containing tantalum or niobium chloride and oxychloride complexes in different oxidation states. Both electrochemical impedance spectroscopy and the Wagner–Hebb polarization method have been employed at various redox potentials and temperatures up to 1000 K. In all systems a nearly parabolic potential dependence of the electronic conductivity around the equilibrium redox potential is observed with a maximum of σe∽0.1 Ω-1 cm-1 near the Ta(IV)–Ta(V) equilibrium and lower values for the respective redox equilibria in the niobium containing systems. Results from impedance and polarization experiments agree within a factor of 2. The electronic diffusion coefficients in the tantalum containing melts have been determined from the current transients in the polarization experiments and typical values of ∽10-2 cm2 s-1 are found at 830 K with an activation energy of about 0.7 eV for 830⩽T/K⩽980. A simple two site model for electron hopping and intervalence charge transfer in these melts is discussed which qualitatively explains the observed parabolic potential dependence of the electronic conductivity and its temperature dependence.


References

  1. G. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus and J. J. Egan, Light Metals 1991, ed. E. L. Rooy, The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, USA, 1990, p. 283 Search PubMed.
  2. W. Freyland, in The Metal–Nonmetal Transition Revisited, 1995, ed. P. P. Edwards and C. N. R. Rao, Taylor and Francis, London, pp. 167–191 Search PubMed.
  3. M. A. Bredig, in Molten Salt Chemistry, 1964, ed. M. Blander, Interscience, New York, pp. 365–425 Search PubMed.
  4. W. Freyland, K. Garbade, H. Heyer and E. Pfeiffer, J. Phys. Chem., 1984, 88, 3745 CrossRef CAS; D. Nattland, Th. Rauch and W. Freyland, J. Chem. Phys., 1993, 98, 4429 CrossRef CAS.
  5. Th. Schindelbeck and W. Freyland, J. Chem. Phys., 1996, 105, 4448 CrossRef CAS.
  6. A. Selloni, R. Car, M. Parrinello and P. Carnevali, J. Phys. Chem., 1987, 91, 4947 CrossRef CAS; L. F. Xu, A. Selloni and M. Parrinello, Chem. Phys. Lett., 1989, 162, 27 CrossRef CAS; Th. Koslowski, J. Chem. Phys., 1997, 106, 7241 CrossRef CAS.
  7. W. W. Warren, Jr., in Molten Salt Chemistry, ed. G. Mamantov and R. Marassi, Nato ASI Series No. 202, D. Reidel, Dodrecht, 1987 Search PubMed.
  8. J. J. Egan and W. Freyland, Ber. Bunsen-Ges. Phys. Chem., 1985, 89, 381 Search PubMed.
  9. G. M. Haarberg, K. S. Osen, J. J. Egan, H. Heyer and W. Freyland, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 139 Search PubMed; G. M. Haarberg, J. Thonstadt, J. J. Egan, R. Oblakowski and S. Pietrzk, Light Metals, Proc. 125th Annual Meeting, MMS, Warrendale, Pennsylvania, USA, 1996, p. 221 Search PubMed.
  10. P. Day, La Recherche, 1981, 12, 304 Search PubMed; T. J. Meyer, in Mixed Valence Compounds, ed. D. B. Brown, D. Reidel, Dordrecht, 1980, p. 75 Search PubMed.
  11. M. V. Smirnov, P. M. Usov, V. S. Lbov and O. M. Shabanov, Tr. Inst. Elektrokhim., 1965, 57 Search PubMed; translated in A. N. Barabroshkin, Electrochemistry of Molten and Solid Electrolytes, Consultants Bureau, New York, 1966, vol. 3, pp. 49–56 Search PubMed.
  12. W. W. Warren, G. Schönherr and F. Hensel, Chem. Phys. Lett., 1983, 96, 505 CrossRef; K. Ichikawa and W. W. Warren, Jr., Phys. Rev. B, 1979, 20, 900 CrossRef CAS.
  13. U. Stöhr, P. R. Bandi, F. Matthiesen and W. Freyland, Electrochim. Acta, 1998, 43, 569 CrossRef CAS; U. Stöhr and W. Freyland, Electrochim. Acta, 1999, 44(13), 2199 CrossRef CAS.
  14. M. Bachtler, W. Freyland, G. A. Voyiatzis and G. N. Papatheodorou, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 21 CAS.
  15. See e.g.C. H. Hamann and W. Vielstich, Elektrochemie II, VCH, Weinheim, 1981 Search PubMed.
  16. J. Maier, Sol. State Phenom., 1994, 39–40, 35 Search PubMed; J. Maier, Z. Phys. Chem. (Munich), 1984, 140, 191 CAS.
  17. U. Stöhr, PhD Thesis, University of Karlsruhe, 1997.
  18. See e.g.H. Rickert, Electrochemistry of Solids, Springer, Berlin, 1982 Search PubMed.
  19. G. M. Haarberg, K. S. Osen, J. Thonstad, R. J. Heus and J. J. Egan, Metall. Trans. B, 1993, 24, 729 Search PubMed.
  20. M. Bachtler, W. Freyland, C. Rosenkilde and T. Ostvold, J. Phys. Chem., 1994, 98, 742 CrossRef CAS.
  21. M. Slyters-Rehbach and J. H. Slyters, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1970, vol. 4 Search PubMed.
  22. See e.g.F. T. Lange, PhD Thesis, University of Karlsruhe, 1992.
  23. H. Böttger and V. V. Bryksin, Hopping Conduction in Solids, Akademic Verlag, Berlin, 1985 Search PubMed.
  24. C. Rosenkilde, G. A. Voyiatzis and T. Ostvold, Acta Chem. Scand., 1995, 49, 405 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.