Comparison of the dielectric properties of 4-(2-methylbutyl)-4′-cyanobiphenyl (5*CB) and 4-pentyl-4′-cyanobiphenyl (5CB) in the liquid state

(Note: The full text of this document is currently only available in the PDF Version )

Stanisław Urban, Bo Gestblom and Roman Dabrowski


Abstract

Dielectric relaxation studies of chiral 4-(2-methylbutyl)-4′-cyanobiphenyl (5*CB) in the liquid state at temperatures up to ca. 90 K above the melting point have been performed. Two experimental techniques were used: time domain spectroscopy (TDS) and an impedance analyser, which together cover the frequency range from 10 kHz to ca. 3 GHz. The obtained relaxation times τis as a function of the temperature were compared with those obtained recently for the isotropic phase of 4-pentyl-4′-cyanobiphenyl (5CB), being a typical liquid crystalline substance. It was found that for 5*CB, unlike 5CB, the relaxation time τis(T) shows a non-Arrhenius behaviour in the range of ca. 70 K above the melting point. The τis(T) behaviour was analysed using the Vogel–Fulcher–Tammann (VFT) formula. The VFT curve fits very well the experimental points as well as those obtained recently by Massalska-Arodż etal. in the supercooled state of 5*CB. For both substances the static permittivity εs was measured up to 365 K and the Kirkwood correlation factor gapp22 was established. The temperature dependence of g-factors indicates that the antiparallel dipole–dipole associations are stronger for the chiral compound than for the non-chiral one.


References

  1. M. Massalska-Arodż, G. Williams, I. K. Smith, C. Conolly, G. A. Aldrige and R. Dabrowski, J. Chem. Soc., Faraday Trans., 1998, 94, 387 RSC.
  2. M. Massalska-Arodż and J. Krawczyk, SPIE Proc., in the press Search PubMed.
  3. S. Urban, A. Würflinger, D. Büsing, T. Brückert, M. Sandmann and B. Gestblom, Polish J. Chem., 1998, 72, 241 Search PubMed.
  4. S. Urban, B. Gestblom and A. Würflinger, Mol. Cryst. Liq. Cryst., 1999, 331, 1973 Search PubMed.
  5. J. Mayer, W. Witko, M. Massalska-Arodż, G. William and R. Dabrowski, Phase Transitions, 1999, 69, 199 Search PubMed.
  6. R. H. Cole, J. G. Berberian, S. Mashimo, G. Chryssikos, A. Burns and E. Tombari, J. Appl. Phys., 1989, 66, 793 CrossRef.
  7. C. J. F. Böttcher and P. Bordewijk, Theory of Electric Polarization, Elsevier Scientific, Amsterdam, 1978, vol. II Search PubMed.
  8. D. W. Davidson and R. H. Cole, J. Chem. Phys., 1951, 18, 1417 CrossRef; D. W. Davidson and R. H. Cole, J. Chem. Phys., 1951, 19, 1484 CrossRef CAS.
  9. G. Williams and D. C. Watts, Trans. Faraday Soc., 1970, 66, 80 RSC; G. Williams, D. C. Watts, S. B. Dev and A. M. North, Trans. Faraday Soc., 1971, 67, 1323 RSC.
  10. We are grateful to Prof. J. Małecki for providing us with very useful programs for the fitting of all discussed equations to the experimental spectra.
  11. A. Würflinger, Ber. Bunsen-Ges. Phys. Chem., 1991, 95, 1040.
  12. M. J. Bradshaw and E. P. Raynes, Mol. Cryst. Liq. Cryst. Lett., 1981, 72, 73 Search PubMed.
  13. S. Urban and A. Würflinger, Adv. Chem. Phys., 1997, 98, 143 CAS.
  14. N. E. Hill, W. E. Voughan, A. H. Price and M. Davies, Dielectric Properties and Molecular Behaviour, Van Nostrand, London, 1969 Search PubMed.
  15. G. Menu, PhD Thesis, Catholic University of Leuven, Belgium, 1988.
  16. M. Brodzik and R. Dabrowski, Liq. Cryst., 1996, 20, 99 CAS.
  17. M. Sandmann, F. Hamann and A. Würflinger, Z. Naturf., 1997, 52a, 739 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.