Non-ideality of the system NH3–H2–N2. Comparison of equation of state and simulation predictions with experimental data

(Note: The full text of this document is currently only available in the PDF Version )

Luís E. S. de Souza and Ulrich K. Deiters


Abstract

In this study, experimental PVT data of pure NH3, H2, N2 and He are used to extract parameters for a three-parameter semi-empirical equation of state (EOS) for a pure substance and interaction parameters for the exponential-6 (exp-6) potential. For ammonia, the experimental pressure and liquid density at 323 K in the liquid–vapour coexistence region and the experimental density at the same temperature and 9500 bar are taken as inputs in the fitting procedure. For the other species, supercritical data at pressures up to 10000 bar are selected. It is found that the EOS is not able to simultaneously fit both the liquid–vapour coexistence data and the high pressure region of ammonia. In contrast, the use of Monte Carlo simulations with an optimised set of exp-6 parameters leads to good agreement both at low and high pressure. The quality of the fits to H2 and N2 data using the EOS is significantly worse than that using the optimised exp-6 potential because the EOS requires physically unreasonable parameters for a good fit. Despite the higher deviations of the EOS results, their corresponding predicted equilibrium constants for the synthesis of ammonia from H2 and N2 in the industrial range agree just as well with the experimental data. Furthermore, the predicted critical point is slightly closer to the experimental value (a deviation of 10% in the critical temperature). Simulations with the exp-6 potential are performed for the system H2–He–NH3–N2 at pressures and temperatures occurring in the deep atmosphere of Jupiter. Comparison between previous ideal calculations and the simulation predictions indicates that the expected concentration of N2 at 2300 K is overestimated by about a factor of three when ideality is assumed.


References

  1. U. Deiters, Chem. Eng. Sci., 1981, 36, 1139 CrossRef CAS.
  2. U. Deiters, Chem. Eng. Sci., 1981, 36, 1147 CrossRef CAS.
  3. U. Deiters, Chem. Eng. Sci., 1982, 37, 855 CrossRef CAS.
  4. U. K. Deiters, Fluid Phase Equilib., 1987, 33, 267 CrossRef CAS.
  5. G. A. Mansoori, N. F. Carnahan, K. E. Starling and T. W. Leland, J. Chem. Phys., 1971, 54, 1523 CrossRef CAS.
  6. U. K. Deiters, M. Neichel and E. U. Franck, Ber. Bunsen-Ges. Phys. Chem., 1993, 97, 649 CAS.
  7. L. E. Fried and W. M. Howard, J. Chem. Phys., 1998, 109, 7338 CrossRef CAS.
  8. M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids, Oxford University Press, New York, 1991, pp. 64–65 Search PubMed.
  9. M. P. Allen and D. J. Tildesley, in Computer Simulation of Liquids, Oxford University Press, New York, 1991, pp. 118–123 Search PubMed.
  10. A. Z. Panagiotopoulos, Mol. Phys., 1987, 61, 813 CAS.
  11. A. Z. Panagiotopoulos, N. Quirke, M. Stapleton and D. Tildesley, Mol. Phys., 1988, 63, 527 CAS.
  12. W. R. Smith and B. Triska, J. Chem. Phys., 1994, 100, 3019 CrossRef CAS.
  13. In TRC Thermodynamic Tables—Non-Hydrocarbons, ed. M. Frenkel, N. M. Gadalla, K. R. Hall, X. Hong, K. N. Marsh and R. C. Wilhoit, Thermodynamics Research Center, The Texas A&M University System, College Station, Texas, 1997, p. x-500 Search PubMed.
  14. H. Bakemeier, T. Huberich, R. Krabetz and W. Liebe, in Ullmann's Encyclopedia of Industrial Chemistry, ed. Wolfgang Gerhartz, VCH, Weinheim, 1985, vol. A2, pp. 143–156 Search PubMed.
  15. A. Harlow, G. Wiegand and E. U. Frank, Ber. Bunsen-Ges. Phys. Chem., 1997, 101, 1461 CAS.
  16. S. K. Saxena and Y. Fei, Geochim. Cosmochim. Acta, 1988, 52, 1195 CAS.
  17. S. L. Robertson and S. E. Babb, Jr., J. Chem. Phys., 1969, 50, 4560 CAS.
  18. C. A. ten Seldam and S. N. Biswas, J. Chem. Phys., 1992, 96, 6163 CrossRef.
  19. B. Fegley, Jr. and K. Lodders, Icarus, 1994, 110, 117 CrossRef.
  20. A. B. Belonoshko and S. K. Saxena, Geochim. Cosmochim. Acta, 1992, 56, 3611 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.