Soot particles in premixed C2H4–air-flames at high pressures (P=30–70 bar)

(Note: The full text of this document is currently only available in the PDF Version )

Th. Heidermann, H. Jander and H. Gg. Wagner


Abstract

In premixed C2H4–air-flames, optical measurements of the growth of soot particles were performed in the pressure region of 30 to 70 bar. From the laser-scattering and molar absorptivity measurements, particle number densities, N, particle diameter, d, and soot volume fraction, fV, were obtained at different heights above the burner for several mixture compositions and unburnt gas velocities corresponding to different flame temperatures. In addition soot samples were taken for electron microscopic measurements. The particle diameters and their size-distributions were determined and the soot particle structures were studied. The electron microscopic measurements showed, that for the pressures applied, the primary particle diameters can be described by a log–normal size distribution with a mean standard deviation of σg≈0.35 nm. In the high resolution electron micrographs, crystallite layers could be observed. These crystallite layers become more pronounced for long reaction times, high flame temperatures and high pressures. In the pressure region of 30 to 70 bar the particle number density towards the end of the growth process, N, increases with increasing C/O ratio and with pressure. At 70 bar N can reach 1013 cm-3 in strongly sooting flames. The final particle diameter, d, for otherwise fixed conditions decreases with pressure, so that at 70 bar small diameters of d⩽50 nm result. Therefore the mean final soot surface, A, becomes very large, with values up to 250 cm-1 observed (C/O[greater than or equal, slant]0.70, T∽1850 K).


References

  1. A. D'Alessio, in Particulate Carbon: Formation During, Combustion, ed. D. C. Siegla and G. W. Smith, Plenum Press, New York, 1983, p. 207 Search PubMed.
  2. A. D'Alessio, B. M. Vaglieco and F. Beretta, Aerosols: Formation and Reactivity, 2nd International Aerosol Conference, Berlin, 1986 Search PubMed.
  3. K. H. Homann and H. Gg. Wagner, Chemistry of Carbon Formation in Flames, Proc. R. Soc. A, 1968, 307, 141 Search PubMed.
  4. G. Prado and J. Lahaye, in Particulate Carbon. Formation During Combustion, ed. D. C. Siegla and G. W. Smith, Physical Aspects of Nucleation and Growth of Soot Particles, 1981, p. 143 Search PubMed.
  5. G. Prado, J. Lahaye and B. S. Haynes, in Soot in Combustion Systems and its Toxic Properties, ed. J. Lahaye and G. Prado, NATO Conference series VI, Plenum Press, New York, Soot particle nucleation and agglomeration, 1983, vol. 7, p. 145 Search PubMed.
  6. T. Richter, Diplom-Thesis, Göttingen, 1988 Search PubMed.
  7. J. Schulz, Bunsentagung, Göttingen, 1987 Search PubMed.
  8. Ch. Feldermann, H. Jander, S. Hanisch and H. Gg. Wagner, Z. Phys. Chem., 1994, 186, 127 CAS.
  9. H. Böhm, Ch. Feldermann, Th. Heidermann, H. Jander, B. Lüers and H. Gg. Wagner, Twenty-Fourth Symposium (International) on Combustion, The Combustion Institute, 1992, pp. 991–997.
  10. S. Hanisch, H. Jander, Th. Pape and H. Gg. Wagner, Twenty-fifth Symposium (International) on Combustion, The Combustion Institute, 1994, p. 577.
  11. T. Heidermann, PhD Thesis, Göttingen, 1995.
  12. S. C. Lee and C. L. Tien, Eighteenth Symposium (International) on Combustion, The Combustion Institute, 1981, p. 1159.
  13. L. Baumgärtner, D. Hesse, H. Jander and H. Gg. Wagner, Twentieth Symposium (International) on Combustion, The Combustion Institute, 1984, p. 959.
  14. B. S. Haynes and H. Gg. Wagner, Z. Phys. Chem. N.F., 1982, 133, 201 CAS.
  15. R. A. Dobbins and C. M. Megaridis, Langmuir, 1987, 3, 254 CrossRef CAS.
  16. H. Mätzing, PhD Thesis, Göttingen, 1986.
  17. Ü. Ö. Köylü, Comb. Flame, 1996, 109, 488 Search PubMed.
  18. H. Jander, W. Stahlberg and H. Gg. Wagner, Joint Meeting of the British, German and French Section, 18–21 May, Nancy, France, 1999.
  19. M. Kerker, The Scattering of Light, Academic Press, New York, 1969 Search PubMed.
  20. B. S. Haynes and H. Gg. Wagner, Prog. Energy Combust. Sci., 1981, 7, 229 CrossRef CAS.
  21. P. Ferrara, PhD Thesis, Naples, 1977.
  22. W. H. Dalzell and A. F. Sarofim, Trans. ASME J. Heat Transfer, 1969, 91, 100 Search PubMed.
  23. R. A. Dobbins and C. M. Megaridis, Appl. Opt., 1991, 30(33), 4747 CAS.
  24. R. A. Dobbins, R. J. Santoro and Semerjian, Twenty Third Symposium (International) on Combustion, The Combustion Institute, 1990, pp. 1525–1532.
  25. H. Böhm, D. Hesse, H. Jander, B. Lüers, J. Pietscher, H. Gg. Wagner and M. Weiss, Twenty Second (International Symposium) on Combustion, The Combustion Institute, 1988, pp. 403–411.
  26. H. Bönig, Ch. Feldermann, H. Jander, B. Lüers, G. Rudolph and H. Gg. Wagner, Twenty Third Symposium (International) on Combustion, The Combustion Institute, 1990, pp. 1581–1587.
Click here to see how this site uses Cookies. View our privacy policy here.