Organic contribution to sub-micron aerosol evolution over a boreal forest—a case study

(Note: The full text of this document is currently only available in the PDF Version )

Edo J. Becker, Colin D. O'Dowd, Claudia Hoell, Pasi Aalto, Jyrki M. Mäkelä and Markku Kulmala


Abstract

During the spring and summer of 1998 and spring of 1999 three major international campaigns have been performed at the SMEAR II Station (Station for Measuring Forest Ecosystem–Atmosphere Relations) in Hyytiälä, Finland. The measurements have been conducted as part of the BIOFOR programme, the objectives of which were to elucidate the main factors leading to nucleation and growth of new particles over forested regions. For typical nucleation events encountered in this environment, total particle concentration and surface area reduce rapidly due to mixing processes in the late morning prior to a nucleation event. After this reduction in pre-existing aerosol, ultra-fine particles (3–10 nm) appear, and grow rapidly (over several hours) towards accumulation mode sizes (>100 nm). Volatility measurements of new particle composition, once they have grown into accumulation mode sizes, illustrate a significant organic contribution to aerosol mass. Suggested contributors to this organic mass are pinic acid and/or cis-pinoic acid.


References

  1. R. J. Charlson and T. M. L. Wigley, Sci. Am., 1994, 23, 48–57 Search PubMed.
  2. S. A. Twomey, Atmos. Environ., 1974, 8, 1251–1256 CrossRef.
  3. A. Guenther, C. N. Hewitt, D. Erickson, R. Fall, C. Geron, T. Graedel, P. Harley, L. Klinger, M. Lerdau, W. A. McKay, T. Pierce, B. Scholes, R. Steinbrecher, R. Tallamraju, J. Taylor and P. Zimmerman, J. Geophys. Res., 1995, 100, 8873–8892 CrossRef CAS.
  4. A. Wiedensohler, D. S. Covert, E. Swietlicki, P. Aalto, J. Heintzenberg and C. Leck, Tellus, 1996, 48B, 213–222 Search PubMed.
  5. C. O'Dowd, J. A. Lowe, M. H. Smith, B. Davison, C. N. Hewitt and R. M. Harrison, J. Geophys. Res., 1997, 102, D11, 12839–12854.
  6. A. D. Clarke, J. Atmos. Chem., 1992, 14, 479–488 CAS.
  7. J. M. Mäkelä, P. Aalto, V. Jokinen, T. Pohja, A. Nissinen, S. Palmroth, T. Markkanen, K. Seitsonen, H. Lihavainen and M. Kulmala, Geophys. Res. Lett., 1997, 24, No. 10, 1219–1222.
  8. W. R. Leaitch, J. W. Bottenheim, T. A. Biesenthal, S.-M. Li, P. S. K. Liu, K. Asalian, H. Dryfhout-Clark and F. Hopper, J. Geophys. Res., 1999, 104, D7, 8095–8111 CrossRef.
  9. C. D. O'Dowd, M. Geever, M. K. Hill, S. G. Jennings and M. H. Smith, Geophys. Res. Lett., 1998, 25, 1661–1664 CAS.
  10. C. D. O'Dowd, G. McFiggens, L. Pirjola, D. J. Creasey, C. Hoell, M. H. Smith, B. Allen, J. M. C. Plane, D. E. Heard, J. D. Lee, M. J. Pilling and M. Kulmala, Geophys. Res. Lett., 1999, 26, 1707 CrossRef CAS.
  11. T. Vesala, J. Haataja, P. Aalto, N. Altimir, G. Buzorius, E. Garam, K. Hämeri, H. Ilvesniemi, V. Jokinen, P. Keronen, T. Lahti, T. Markkanen, J. M. Mäkelä, E. Nikinmaa, S. Palmroth, L. Palva, T. Pohja, J. Pumpanen, U. Rannik, E. Siivola, H. Ylitalo, P. Hari and M. Kulmala, Trends Heat, Mass Momentum Transf., 1998, 4, 17–35 Search PubMed.
  12. M. Kulmala, A. Toivonen, J. M. Mäkelä and A. Laaksonen, Tellus, 1998, 50B, 449–462 Search PubMed.
  13. M. R. Stolzenburg and P. H. McMurry, Aerosol Sci. Technol., 1991, 14, 48–65 CAS.
  14. J. Kesten, A. Reineking and J. Porstendorfer, Aerosol Sci. Technol., 1991, 15, 107–111 CAS.
  15. J. K. Agarwal and G. J. Sem, J. Aerosol Sci., 1980, 11, 343–357 CrossRef.
  16. S. Mertes, F. Schroeder and A. Wiedensohler, Aerosol Sci. Technol., 1995, 23, 257–261 CAS.
  17. T. Hoffman, IG Activities, International Global Atmospheric Chemistry Project Newsletter, 1999, 18 Search PubMed and references therein.
  18. P. Korhonen, M. Kulmala, A. Laaksonen, Y. Viisanen, R. McGraw and J. H. Seinfeld, J. Geophys. Res., 1999, submitted Search PubMed.
  19. L. Pirjola, J. Aerosol Sci., 1999, 30, No. 3, 355–367.
Click here to see how this site uses Cookies. View our privacy policy here.