Temperature dependent rate constants for the reactions of gas phase lanthanides with CO2

(Note: The full text of this document is currently only available in the PDF Version )

Mark L. Campbell


Abstract

The reactivity of the gas phase lanthanide atoms Ln (Ln=La–Yb with the exception of Pm) with CO2 is reported. Lanthanide atoms were produced by the photodissociation of [Ln(TMHD)3] and detected by laser-induced fluorescence. For all the lanthanides studied with the exception of Yb, the reaction mechanism is bimolecular abstraction of an oxygen atom. The bimolecular rate constants (in molecule-1 cm3 s-1) are described in Arrhenius form by: k[Ce(1G4)]=(3.4±1.0)×10-10 exp(-3.5±1.0 kJ mol-1/RT); Pr(4I9/2), (2.5±0.4)×10-10 exp(-7.9±0.7 kJ mol-1/RT); Nd(5I4), (3.3±0.6)×10-10 exp(-12.0±0.8 kJ mol-1/RT); Sm(7F0), (1.7±0.8)×10-10 exp(-15.8±1.8 kJ mol-1/RT); Eu(8S7/2), (6.6±2.3)×10-10 exp(-39.2±1.6 kJ mol-1/RT); Gd(9D2), (1.1±0.3)×10-10 exp(-5.8±0.9 kJ mol-1/RT); Tb(6H15/2), (1.1±0.3)×10-10 exp(-10.8±1.2 kJ mol-1/RT); Dy(5I8), (4.0±0.7)×10-10 exp(-30.3±0.7 kJ mol-1/RT); Ho(4I15/2), (3.7±1.1)×10-10 exp(-33.1±1.3 kJ mol-1/RT); Er(3H6), (5.8±2.5)×10-10 exp(-36.9±2.0 kJ mol-1/RT); Tm(2F7/2), (1.1±0.5)×10-10 exp(-45.4±2.3 kJ mol-1/RT) where the uncertainties represent ±2σ. Yb(1S0) is unreactive with CO2 below 623 K. The reaction barriers are found to correlate to the energy required to promote an electron out of the 6s subshell.


References

  1. C. F. Nien, B. Rajasekhar and J. M. C. Plane, J. Phys. Chem., 1993, 97, 6449 CrossRef CAS.
  2. A. Fontijn and P. N. Bajaj, J. Phys. Chem., 1996, 100, 7085 CrossRef CAS.
  3. N. L. Garland and H. H. Nelson, Chem. Phys. Lett., 1992, 191, 269 CrossRef CAS.
  4. J. M. Parnis, S. A. Mitchell and P. A. Hackett, Chem. Phys. Lett., 1988, 151, 485 CrossRef CAS.
  5. M. L. Campbell, Chem. Phys. Lett., 1998, 294, 339 CrossRef CAS.
  6. M. L. Campbell, J. Chem. Soc., Faraday Trans., 1998, 94, 1687 RSC.
  7. R. E. McClean, M. L. Campbell and E. J. Kolsch, J. Phys. Chem. A, 1997, 101, 3348 CrossRef CAS.
  8. M. L. Campbell, K. L. Hooper and E. J. Kolsch, Chem. Phys. Lett., 1998, 274, 7 CrossRef CAS.
  9. M. L. Campbell and R. E. McClean, J. Phys. Chem., 1993, 97, 7942 CrossRef CAS.
  10. R. E. McClean and L. Pasternack, J. Phys. Chem., 1992, 96, 9828 CrossRef CAS.
  11. M. L. Campbell and K. L. Hooper, J. Chem. Soc., Faraday Trans., 1997, 93, 2139 RSC.
  12. R. E. McClean, M. L. Campbell and R. H. Goodwin, J. Phys. Chem., 1996, 100, 7502 CrossRef CAS.
  13. M. L. Campbell, unpublished results.
  14. M. L. Campbell and R. E. McClean, J. Chem. Soc., Faraday Trans., 1995, 91, 3787 RSC.
  15. W. F. Meggers, C. H. Corliss and B. F. Scribner, Tables of Spectral-Line Intensities, Part I Arranged by Elements, NBS Mono. 145, US Government Printing Office, Washington, DC, 1975 Search PubMed.
  16. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, J. Phys. Chem. Ref. Data, 1982, 11, Suppl. 2.
  17. J. B. Pedley and E. M. Marshall, J. Phys. Chem. Ref. Data, 1983, 12, 967 CAS.
  18. M. L. Campbell, J. Chem. Phys., 1999, 111, 562 CrossRef CAS.
  19. M. L. Campbell, J. Phys. Chem. A, in the press Search PubMed.
  20. W. C. Martin, R. Zalubas and L. Hagan, Atomic Energy Levels–The Rare-Earth Elements, Natl. Stand. Ref. Data Ser. (US Natl. Bur. Stand.), 1978, NSRDS-NBS 60 Search PubMed.
  21. P. Carette and A. Hocquet, J. Mol. Spectrosc., 1988, 131, 301 CAS.
  22. M. Dulick and R. W. Field, J. Mol. Spectrosc., 1985, 113, 105 CAS.
  23. C. Linton, M. Dulick, R. W. Field, P. Carette, P. C. Leyland and R. F. Barrow, J. Mol. Spectrosc., 1983, 102, 441 CAS.
  24. C. Linton, G. Bujin, R. S. Rana and J. A. Gray, J. Mol. Spectrosc., 1987, 126, 370 CAS.
  25. C. Linton, D. M. Gaudet and H. Schall, J. Mol. Spectrosc., 1986, 115, 58 CAS.
  26. Y. C. Liu, C. Linton, H. Schall and R. W. Field, J. Mol. Spectrosc., 1984, 104, 72 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.