On the structure of the monohydrated superoxide molecular anion, O2-·(H2O). An abinitio molecular orbital study

(Note: The full text of this document is currently only available in the PDF Version )

Ella M. C. Robinson, Wendy L. Holstein, Gerarda M. Stewart and Mark A. Buntine


Abstract

The ground-state potential energy surface of the monohydrated superoxide ion–dipole complex O2-·(H2O) was investigated viaabinitio molecular orbital theory in order to establish firmly the relative energies of stationary points on this surface. Using the configuration interaction (CI) theoretical approach to accommodate the effects of electron correlation, the global minimum on the potential energy surface corresponds to a structure adopting Cs molecular symmetry with one end of the water molecule forming a hydrogen bond with one end of the superoxide. A more symmetric structure adopting C2v molecular symmetry is shown to be a transition state linking two equivalent forms of the Cs geometry via a water rocking motion. Using a highly flexible triple-zeta basis set with quadratic configuration interaction theory incorporating all single and double electron substitutions [QCISD/6–311++G**], the scaled zero point energies for the C2v and Cs geometries are 64.6 and 64.1 kJ mol-1, respectively. The energy barrier to the water rocking motion along the reaction coordinate is 3.9 kJ mol-1. The frequencies of the symmetric and asymmetric water O–H stretches in the C2v structure are 3731 and 3765 cm-1, respectively. The water O–H stretching frequencies in the Cs structure are 3178 cm-1 for the “hydrogen bonded’' OH and 3937 cm-1 for the “free’' OH. The geometry of the global minimum of O2-·(H2O) on the equivalent of the first electronically excited potential energy surface of the bare superoxide was also determined using the complete active space self-consistent field (CASSCF) theoretical approach. A vibrational frequency analysis confirms that the excited-state stationary point is a local minimum geometry. The excited-state geometry differs significantly from that in the ground electronic state. The overall molecular symmetry in the excited state remains as Cs, but the water molecule adopts an orientation approximately midway between the ground-state Cs and C2v configurations.


References

  1. J. Choi, K. T. Kuwata, Y. B. Cao and M. Okumura, J. Phys. Chem. A, 1998, 102, 503 CrossRef CAS.
  2. D. Serxner, C. E. Dessent and M. A. Johnson, J. Chem. Phys., 1996, 105, 7231 CrossRef CAS.
  3. P. Ayotte, C. G. Bailey, J. Kim and M. A. Johnson, J. Chem. Phys., 1998, 108, 444 CrossRef CAS.
  4. D. J. Lavrich, M. A. Buntine, D. Serxner and M. A. Johnson, J. Chem. Phys., 1993, 99, 5910 CrossRef CAS.
  5. M. A. Buntine, D. J. Lavrich, C. E. Dessent, M. G. Scarton and M. A. Johnson, Chem. Phys. Lett., 1993, 216, 471 CrossRef CAS.
  6. D. J. Lavrich, M. A. Buntine, D. Serxner and M. A. Johnson, J. Phys. Chem., 1995, 99, 8453 CrossRef CAS.
  7. K. Ohta and K. Morokuma, J. Phys. Chem., 1987, 91, 401 CrossRef CAS.
  8. L. A. Curtiss, C. A. Melendres, A. E. Reed and F. Weinhold, J. Comput. Chem., 1986, 7, 294 CAS.
  9. V. G. Pilipchuk, V. V. Smolinskii and S. A. Shchekatolina, Zh. Strukt. Khim., 1988, 29, 149 Search PubMed.
  10. J. P. Lopez, J. Comput. Chem., 1989, 10, 55 CAS.
  11. J. P. Lopez, T. A. Albright and J. A. McCammon, Chem. Phys. Lett., 1986, 125, 454 CrossRef CAS.
  12. E. P. F. Lee and J. M. Dyke, Mol. Phys., 1991, 74, 333 CAS.
  13. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision D.3, Gaussian Inc., Pittsburgh, PA, 1995 Search PubMed.
  14. The QCISD(T) theory involves a quadratic configuration interaction calculation incorporating all single and double electron substitutions and a triples contribution to the calculated energy.
  15. K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: Constants of Diatomic Molecules, Van Nostrand, New York, 1979 Search PubMed.
  16. A local minimum on a potential energy surface is characterised by having all real vibrational frequencies and all positive eigenvalues in the hessian matrix while a transition state is characterised by having one imaginary vibrational frequency and one negative eigenvalue in the hessian matrix.
  17. M. A. Johnson, personal communication, 1998.
  18. C. R. Sherwood and R. E. Continetti, Chem. Phys. Lett., 1996, 258, 171 CrossRef CAS.
  19. J. C. Speakman, The Hydrogen Bond and Other Intermolecular Forces, Chemical Society, London, 1975 Search PubMed.
  20. L. A. Curtiss, K. Raghavachari, G. W. Trucks and J. A. Pople, J. Chem. Phys., 1991, 94, 7221 CrossRef CAS.
  21. J. B. Foresman and Æ. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburg, PA, 2nd edn., 1996 Search PubMed.
  22. J. Rolfe, J. Chem. Phys., 1979, 70, 2463 CrossRef CAS.
  23. J. Rolfe, J. Chem. Phys., 1963, 40, 1664 CrossRef.
  24. A. M. Ikezawa and J. Rolfe, J. Chem. Phys., 1973, 58, 2024 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.