Thin film properties and surface morphology of metal free phthalocyanine films grown by organic molecular beam deposition

(Note: The full text of this document is currently only available in the PDF Version )

S M. Bayliss, S. Heutz, G. Rumbles and T. S. Jones


Abstract

The structure, optical properties and surface morphology of thin films of metal free phthalocyanine (H2Pc) deposited in an ultra-high vacuum environment by organic molecular beam deposition have been studied using a variety of ex-situ techniques. The growth conditions have a strong influence on the properties of the films. H2Pc undergoes a phase transition (α→β) at a deposition temperature of ∽330°C, or upon post annealing a film grown at room temperature. Both the structure and optical properties of the films change and powder X-ray diffraction, electronic absorption spectroscopy, Raman and photoluminescence spectroscopies are used to characterise the differences between the two phases. Atomic force microscopy and Nomarski interference microscopy show that the lower temperature α-phase is characterised by a smooth morphology with spherical islands that show no apparent long-range order. By contrast, the β-phase has a much greater root mean square roughness and long thin needle-like crystals are observed on the surface of the films. The morphology of the β-phase depends on the method of preparation and there are two distinct types, β1 and β2. The crystallites show a preferential orientation and alignment with respect to each other for growth at room temperature followed by annealing (β1), but are randomly oriented for films grown at elevated substrate temperatures (β2).


References

  1. S. R. Forrest, Chem. Rev., 1997, 97, 1793 CrossRef CAS.
  2. N. B. McKeown, Phthalocyanine Materials; Synthesis, Structure and Function, Cambridge University Press, Cambridge, 1998 Search PubMed.
  3. D. X. Wang, Y. Tanaka, M. Iizuka, S. Kuniyoshi, S. Kudo and K. Tanaka, Jpn. J. Appl. Phys., 1999, 38, 256 CrossRef CAS.
  4. G. Gu, V. Khalfin and S. R. Forrest, Appl. Phys. Lett., 1998, 73, 2399 CrossRef CAS.
  5. S. A. van Slyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett., 1996, 69, 2160 CrossRef CAS.
  6. W. Kowalsky, T. Benstem, A. Bohler, S. Dirr, H.-H. Johannes, D. Metzdorf, H. Neuner, J. Schöbel and P. Urbach, Phys. Chem. Chem. Phys., 1999, 1, 1719 RSC.
  7. L. Ottoviano, L. Lozzi, S. Santucci, S. Di Nardo and M. Passacarlando, Surf. Sci., 1997, 392, 52 CrossRef.
  8. M. S. Mindorff and D. E. Brodie, Coord. Chem. Rev., 1996, 156, 237 CrossRef CAS.
  9. R. Mason, G. A. Williams and P. E. Fielding, J. Chem. Soc., Dalton Trans., 1979, 676 RSC.
  10. Phthalocyanines: Properties and applications, ed. C. C. Leznoff and A. B. P. Lever, VCH, New York, 1996, vol. 4 Search PubMed.
  11. M. Asihda, N. Uyeda and E. Suito, Bull. Chem. Soc. Jpn., 1966, 39, 2616 CAS.
  12. M. Nakamura and H. Tokumoto, Surf. Sci., 1997, 377–9, 85 CrossRef.
  13. JCPDS Database Card 37-1844.
  14. Spectroscopy of New Materials, Advances in Spectroscopy, ed. R. J. H. Clarke and R. E. Hester, Wiley, New York, 1987, vol. 22 Search PubMed.
  15. J. M. Assour and S. E. Harrison, J. Am. Chem. Soc., 1965, 87, 652 CrossRef.
  16. R. Aroca and R. Loutfy, J. Raman Spectrosc., 1982, 12, 262 CAS.
  17. M. Ashida, N. Uyeda and E. Suito, J. Cryst. Growth, 1971, 8, 45 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.