Zinc(II) hydration in aqueous solution. A Raman spectroscopic investigation and an ab-initio molecular orbital study

(Note: The full text of this document is currently only available in the PDF Version )

Wolfram W. Rudolph and Cory C. Pye


Abstract

Raman spectra of aqueous Zn(II) perchlorate solutions were measured over a broad concentration (0.50–3.54 mol L-1) and temperature (25–120°C) range. The weak polarized band at 390 cm-1 and two depolarized modes at 270 and 214 cm-1 have been assigned to ν1(a1g), ν2(eg) and ν5(f2g) of the hexaaquazinc(II) ion, respectively. The infrared active mode at 365 cm-1 has been assigned to ν3(f1u). The vibrational analysis of the species [Zn(OH2)62+] was done on the basis of Oh symmetry (OH2 as point mass). The polarized mode ν1(a1g) ZnO6 has been followed over the full temperature range and band parameters (band maximum, full width of half height and band intensity) have been examined. The position of the ν1(a1g) ZnO6 mode shifts only about 4 cm-1 to lower frequencies and broadens about 32 cm-1 for a 95°C temperature increase. The Raman spectroscopic data suggest that the hexaaquazinc(II) ion is thermodynamically stable in perchlorate solution over the temperature and concentration range measured. Abinitio geometry optimizations and frequency calculations of [Zn(OH2)62+] were carried out at the Hartree–Fock and second order Møller–Plesset levels of theory, using various basis sets up to 6-31+G*. The global minimum structure of the hexaaqua Zn(II) species corresponds with symmetry Th. The unscaled vibrational frequencies of the [Zn(OH2)62+] were reported. The unscaled vibrational frequencies of the ZnO6 unit are lower than the experimental frequencies (ca. 15%), but scaling the frequencies reproduces the measured frequencies. The theoretical binding enthalpy for [Zn(OH2)62+] was calculated and accounts for ca. 64% of the experimental single ion hydration enthalpy for Zn(II). Abinitio geometry optimizations and frequency calculations are also reported for a [Zn(OH2)182+] (Zn[6+12]) cluster with 6 water molecules in the first sphere and 12 water molecules in the second sphere. The global minimum corresponds with T symmetry. Calculated frequencies of the zinc [6+12] cluster correspond well with the observed frequencies in solution. The ν1 ZnO6 (unscaled) mode occurs at 389 cm-1 in good agreement with the experimental value. The theoretical binding enthalpy for [Zn(OH2)182+] was calculated and is very close to the experimental single ion hydration enthalpy for Zn(II). The water molecules of the first sphere form strong H-bonds with water molecules in the second hydration shell because of the strong polarizing effect of the Zn(II) ion. The importance of the second hydration sphere is discussed.


References

  1. D. E. Irish and M. H. Brooker, in Advances in Infrared and Raman Spectroscopy, ed. R. J. H. Clark and R. E. Hester, Heyden, London, 1976, vol. 2, p. 212 Search PubMed.
  2. M. H. Brooker, in The Chemical Physics of Solvation, Part B. Spectroscopy of Solvation, ed. R. R. Dogonadze, E. Kalman, A. A. Kornyshev and J. Ulstrup, Elsevier, Netherlands, 1986, p. 119 Search PubMed.
  3. M. Moskovits, Proc. Fifth Int. Conf. Raman Spectrosc., ed. E. D. Schmidt, Hans-Ferdinand Schulz Verlag, Freiburg, Germany, 2–8 September 1976, p. 768 Search PubMed.
  4. K. H. Michaellian and M. Moskovits, Nature, 1978, 273, 135.
  5. C. P. Nash, T. C. Donnelly and P. A. Rock, J. Sol. Chem., 1977, 6, 663 Search PubMed.
  6. J. T. Bulmer, D. E. Irish and L. Oedberg, Can. J. Chem., 1975, 53, 3806 CAS.
  7. D. E. Irish and T. Jarv, Faraday Discuss. Chem. Soc., 1977, 64, 95 and 120 RSC.
  8. F. Rull, Ch. Balarev, J. L. Alvarez, F. Sobron and A. Rodriguez, J. Raman Spectrosc., 1994, 25, 933 CAS.
  9. G. E. Walrafen, J. Chem. Phys., 1962, 36, 1035 and 1966, 44, 1546 Search PubMed.
  10. W. W. Rudolph, M. H. Brooker and C. C. Pye, J. Phys. Chem., 1995, 99, 3793 CrossRef CAS.
  11. C. C. Pye, W. Rudolph and R. A. Poirier, J. Phys. Chem., 1996, 100, 601 CrossRef CAS.
  12. M. H. Brooker, O. Faurskov Nielsen and E. Praestgaard, J. Raman Spectrosc., 1988, 19, 71 CAS.
  13. M. Hartmann, T. Clark and R. van Eldik, J. Am. Chem. Soc., 1997, 119, 7843 CrossRef CAS.
  14. A. I. Vogel, A Text-Book of Quantitative Inorganic Analysis, 3rd edn. Longman, London, 1961 Search PubMed.
  15. W. W. Rudolph, M. H. Brooker and P. R. Tremaine, Z. Phys. Chem., 1999, 209, 181 CAS.
  16. W. W. Rudolph and G. Irmer, J. Solution Chem., 1994, 23, 663 CAS.
  17. W. W. Rudolph, Z. Phys. Chem., 1996, 194, 73 CAS.
  18. W. W. Rudolph, M. H. Brooker and P. R. Tremaine, J. Solution Chem., 1997, 26, 757 CAS.
  19. (a) W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys., 1969, 51, 2657 CrossRef CAS; (b) W. J. Pietro and W. J. Hehre, J. Comput. Chem., 1983, 4, 241 CrossRef CAS.
  20. (a) J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., 1980, 102, 939 CrossRef CAS; (b) K. D. Dobbs and W. J. Hehre, J. Comput. Chem., 1987, 8, 880 CrossRef CAS.
  21. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS.
  22. S. Huzinaga, Gaussian Basis Sets for Molecular Calculations, Elsevier, Amsterdam, 1985 Search PubMed.
  23. R. A. Poirier, M. R. Peterson and A. Yadav, MUNGAUSS, Chemistry Department, Memorial University of Newfoundland, St. John's, Newfoundland Search PubMed.
  24. W. C. Davidon and L. Nazareth, Technical Memos 303 and 306, Applied Mathematics Division, Argonne National Laboratories, Argonne, IL, 1977The Algorithm is described in: W. C. Davidon, Math. Prog., 1975, 9, 1 Search PubMed.
  25. P. Cs'asz'ar and P. Pulay, J. Mol. Struct., 1975, 114, 31 CrossRef CAS.
  26. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis and J. A. Montgomery, GAMESS, Iowa State University, Version of 17 July 1993, J. Comput. Chem., 1993, 14, 1347 Search PubMed.
  27. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. W. Wong, J. B. Foresman, M. A. Robb, M. Head-Gordon, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, GAUSSIAN 92/DFT, Revision F.4, Gaussian, Inc., Pittsburgh, PA, 1993.
  28. C. I. Ratcliffe and D. E. Irish, Can. J. Chem., 1984, 62, 1134 CAS.
  29. (a) H. Kanno and J. Hiraishi, J. Raman Spectrosc., 1980, 9, 85 CAS; (b) H. Kanno, J. Phys. Chem., 1988, 92, 4232 CrossRef CAS.
  30. T. E. Jenkins and J. Lewis, Spectrochim. Acta, Part A, 1981, 37, 47 CrossRef.
  31. D. W. James and J. M. Whitnall, J. Raman Spectrosc., 1978, 7, 225 CAS.
  32. (a) W. W. Rudolph, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 183 CAS; (b) W. W. Rudolph and C. C. Pye, J. Phys. Chem. B, 1998, 102, 3564 CrossRef CAS; (c) C. C. Pye and W. W. Rudolph, J. Phys. Chem. A, 1998, 102, 9933 CrossRef CAS.
  33. S. Petrucci, in Ionic Interactions, ed. S. Petrucci, Academic Press, New York, 1971 vol. II, ch. 7, p. 39ff Search PubMed.
  34. (a) R. R. Pappalardo and E. S. Marcos, J. Phys. Chem., 1993, 97, 4500 CrossRef CAS; (b) E. S. Marcos, J. M. Martinez and R. R. Pappalardo, J. Chem. Phys., 1996, 105, 5968 CrossRef CAS.
  35. S. Lee, J. K. Kim, J. K. Park and K. S. Kim, J. Phys. Chem., 1996, 100, 14329 CrossRef CAS.
  36. A. K. Katz, J. P. Glusker, S. A. Beebe and Ch. W. Bock, J. Am. Chem. Soc., 1996, 118, 5752 CrossRef CAS.
  37. N. Ohtomo, K. Arakawa, M. Takeuchi, T. Yamaguchi and H. Ohtaki, Bull. Chem. Soc. Jpn., 1981, 54, 1314 CAS cf. also Y. Marcus, Chem. Rev., 1988, 88, 1475 Search PubMed.
  38. R. Åkesson, L. G. M. Petterson, M. Sandström and U. Wahlgreen, J. Am. Chem. Soc., 1994, 116, 8693 (cf. p. 8697, Table 4.).
  39. M. Pavlov, P. E. M. Siegbahn and M. Sandström, J. Phys. Chem. A, 1998, 102, 219 CrossRef CAS.
  40. A. Muñoz-Páez, R. R. Pappalardo and E. S. Marcos, J. Am. Chem. Soc., 1995, 117, 11710 CrossRef CAS.
  41. (a) E. D. Glendening and D. Feller, J. Phys. Chem., 1995, 99, 3060 CrossRef CAS; (b) D. Feller, E. D. Glendening, R. A. Kendall and K. A. Peterson, J. Chem. Phys., 1994, 100, 4981 CrossRef CAS.
  42. H. Kanno, J. Raman Spectrosc., 1987, 18, 310.
  43. V. M. Tret'yak, V. I. Baranovskii, O. V. Sizova and G. V. Kozhevnikova, Zh. Strukh. Khim., 1978, 19, 594 Search PubMed.
  44. A. Pullman and D. Demoulin, Int J. Quantum Chem., 1979, 16, 641 CAS.
  45. M. Sano and H. Yamatera, Chem. Lett., 1980, 1495 CAS.
  46. D. B. Kitchen and L. C. Allen, J. Phys. Chem., 1989, 93, 7265 CrossRef CAS.
  47. D. Strömberg, M. Sandström and U. Wahlgren, Chem. Phys. Lett., 1990, 172, 49 CrossRef.
  48. J. A. Tossell, J. Phys. Chem., 1991, 95, 366 CrossRef CAS.
  49. E. S. Marcos, R. R. Pappalardo and D. Rinaldi, J. Phys. Chem., 1991, 95, 8928 CrossRef.
  50. M. M. Probst, THEOCHEM, 1992, 253, 275 CrossRef.
  51. D. R. Garmer and M. Krauss, J. Am. Chem. Soc., 1992, 114, 6487 CrossRef CAS.
  52. B. J. Mhin, S. Lee, S. J. Cho, K. Lee and K. S. Kim, Chem. Phys. Lett., 1992, 197, 77 CrossRef CAS.
  53. R. Åkesson, L. G. M. Petterson, M. Sandström, P. E. M. Siegbahn and U. Wahlgren, J. Phys. Chem., 1992, 92, 10773 CrossRef.
  54. D. R. Garmer and N. Gresh, J. Am. Chem. Soc., 1994, 116, 3556 CrossRef CAS.
  55. C. W. Bock, A. K. Katz and J. P. Glusker, J. Am. Chem. Soc., 1995, 117, 3754 CrossRef CAS.
  56. O. G. Parchment, M. A. Vincent and I. H. Hillier, J. Phys. Chem., 1996, 100, 14329 CrossRef CAS.
  57. S. Lee, J. Kim, J. K. Park and K. S. Kim, J. Phys. Chem., 1996, 100, 9869.
  58. R. Åkesson, L. G. M. Pettersson, M. Sandström and U. Wahlgren, J. Am. Chem. Soc., 1994, 116, 8691 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.