Mechanism of the Fenton reaction. Evidence for a new intermediate

(Note: The full text of this document is currently only available in the PDF Version )

Mordechai L. Kremer


Abstract

For the first time, the time dependence of the amount of O2 evolved in the reaction of Fe2+ with H2O2 (the Fenton reaction) was measured by following the decrease of the total [Fe3+] formed upon quenching the reaction mixture with an excess of a strongly acidic solution of Fe2+. The disappearance of Fe2+ in the reaction was followed by quenching it with o-phenanthroline and measuring the absorbance of the Fe2+-phenanthroline complex formed at λ=510 nm. At [H2O2]<10-4 mol dm-3, and quenching the reaction with Fe2+ ions, the formation of a new intermediate was observed. It was identified as the mixed valence binuclear species {FeOFe}5+. A new mechanism for the reaction has been proposed in which FeO2+ acts as the key intermediate. Several rate constants and ratios of rate constants have been determined. The existence of free radicals in the system does not seem to be compatible with the data.


References

  1. H. J. H. Fenton, J. Chem. Soc., 1894, 65, 899 Search PubMed.
  2. C. Walling, Acc. Chem. Res., 1975, 8, 125 CrossRef CAS.
  3. F. Haber and J. Weiss, Proc. R. Soc. London, Ser. A, 1934, 147, 332 Search PubMed.
  4. N. Uri, Chem. Rev., 1952, 50, 375 CrossRef CAS.
  5. W. G. Barb, J. H. Baxendale, P. George and K. R. Hargrave, Trans. Faraday Soc., 1951, 47, 462 RSC.
  6. Y. Kuo, K. Kustin and I. R. Epstein, Inorg. Chem., 1988, 27, 2849.
  7. T. J. Hardwick, Can. J. Chem., 1957, 35, 428 CAS.
  8. T. Rigg, W. Taylor and J. Weiss, J. Chem. Phys., 1954, 22, 575 CAS.
  9. R. M. Milburn and W. C. Voshburg, J. Am. Chem. Soc., 1955, 77, 1352 CrossRef CAS; R. M. Milbourn, J. Am. Chem. Soc., 1957, 79, 537 CrossRef.
  10. M. L. Kremer and G. Stein, Trans. Faraday Soc., 1959, 55, 959 RSC; M. L. Kremer, Trans. Faraday Soc., 1962, 58, 702 RSC; M. L. Kremer, Int. J. Chem. Kinet., 1985, 17, 12 CrossRef.
  11. M. L. Kremer, Arch. Biochem. Biophys., 1974, 161, 658; M. L. Kremer and G. Stein, Int. J. Chem. Kinet., 1977, 9, 179 CAS.
  12. J. H. Baxendale, M. G. Evans and G. S. Park, Trans. Faraday Soc., 1946, 42, 155 RSC.
  13. J. H. Merz and W. A. Waters, Discuss. Faraday Soc., 1947, 2, 179 RSC; J. Chem. Soc., 1949, S.15 Search PubMed.
  14. C. Walling and S. Kato, J. Am. Chem. Soc., 1971, 93, 4275 CrossRef CAS.
  15. M. S. Bains, J. C. Arthur and O. Hinojosa, J. Phys. Chem., 1968, 72, 2250 CrossRef CAS.
  16. K. Takakura and B. Ranby, J. Phys. Chem., 1968, 72, 164 CrossRef CAS.
  17. G. Czapski, H. Levanon and A. Samuni, Isr. J. Chem., 1969, 7, 375 CAS.
  18. J. D. Rush and W. H. Koppenol, J. Inorg. Biochem., 1987, 29, 199 CrossRef CAS.
  19. M. L. Kremer, unpublished work.
  20. W. C. Bray and M. H. Gorin, J. Am. Chem. Soc., 1932, 54, 2124 CrossRef CAS.
  21. A. E. Cahill and H. Taube, J. Am. Chem. Soc., 1952, 74, 2313.
  22. T. J. Conochiolli, E. J. Hamilton, Jr. and N. Sutin, J. Am. Chem. Soc., 1965, 87, 926 CrossRef.
  23. T. Shiga, J. Phys. Chem., 1965, 69, 3806.
  24. H. Sutton and C. C. Winterbourn, Free Radical Biol. Med., 1989, 6, 53 CrossRef CAS.
  25. S. Croft, B. C. Gilbert, J. R. L. Smith and A. C. Whitwood, Free Radical Res. Commun., 1992, 17, 21 Search PubMed.
  26. W. H. Koppenol and J. F. Liebmann, J. Phys. Chem., 1984, 88, 99 CrossRef CAS.
  27. S. Goldstein, D. Meyersein and G. Czapski, Free Radical Biol. Med., 1993, 15, 435 CrossRef CAS.
  28. D. A. Wink, R. W. Nims, J. E. Saaverda, W. E. Utermahlen, Jr. and P. C. Ford, Proc. Acad. Sci. USA, 1994, 91, 6604 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.