Spectroscopic studies of vanadyl–calcite–water–oxygen systems and characterization of oxo-vanadium species deposited on CaCO3

(Note: The full text of this document is currently only available in the PDF Version )

A. Boughriet, B. Mouchel, B. Revel, L. Gengembre and J. Laureyns


Abstract

The reactivity of vanadyl ions towards calcite has been studied in deoxygenated and oxygenated ultra-pure water at room temperature using several techniques: electron paramagnetic resonance (EPR), infrared (IR), laser Raman spectroscopy (LRS), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and liquid-phase and solid-state 51V NMR. Our investigations reveal that the surface chemistry of calcite depends strongly on the concentrations of VO2+ solutions applied in the process. Indeed, for low VO2+ concentrations (⩽5×10-5 mol dm-3) in interaction with calcite (4×10-2 mol dm-3), it was found that vanadium(IV) is well dispersed on CaCO3 surface in the form of solid solutions, (VO)xCa1-xCO3, and the kinetics of its oxygenation on a monolayer type structure is relatively rapid (half-life time: 9–10 min). However , for higher VO2+ concentrations ([greater than or equal, slant]10-4 mol dm-3), metallic multilayers (and/or clusters) grow in the medium, and a three or four components solid solution of CaCO3–VOCO3–VO(OH)2–(H2O) appears as a new phase. Such VO(II) complexes (that can be written as follows: (OH)z(H2O)y(VO)xCa1+(z/2)-xCO3) in contact with oxygen lead slowly to the generation of polyoxovanadate species at the calcite surface that contain both V(IV) and V(V) atoms. The combined use of EPR, LRS, IR, XPS and 51V NMR techniques has allowed the successful monitoring of these calcite surface phenomena, proving the existence of these layers, and even identifying the chemical composition of such coatings.


References

  1. R. J. Reeder, Carbonates: Mineralogy and Chemistry. Reviews in Mineralogy, series ed. P. H. Ribbe, Mineralogical Society of America, BookCrafters, Inc.Chelsea, Michigan, 1983, p. 394 Search PubMed.
  2. J. W. Morse and F. T. Mackenzie, Geochemistry of Sedimentary Carbonates, Elsevier, Amsterdam, 1990, p. 707 Search PubMed.
  3. A. Mucci and J. W. Morse, Aquat. Sci., 1990, 3, 217 CAS.
  4. N. Nassrallah-Aboukais, A. Boughriet, J. C. Fischer, M. Wartel, H. R. Langelin and A. Aboukais, J. Chem. Soc., Faraday Trans., 1996, 92, 3211 RSC.
  5. N. Nassrallah-Aboukais, A. Boughriet, J. Laureyns, A. Aboukais, J. C. Fischer, H. R. Langelin and M. Wartel, Chem. Mater., 1998, 10, 138.
  6. N. Nassrallah-Aboukais, A. Boughriet, L. Gengembre and A. Aboukais, J. Chem. Soc., Faraday Trans., 1998, 94(16), 2399 RSC.
  7. N. Nassrallah-Aboukais, A. Boughriet, J. Laureyns, L. Gengembre and A. Aboukais, Chem. Mater., 1999, 11(1), 44 CrossRef.
  8. F. T. Mackenzie, W. D. Bischoff, F. C. Bishop, M. Loijens, J. Schoonmaker and R. Wollast, ref. 1, p. 97.
  9. H. Irving and R. J. P. Williams, J. Chem. Soc., 1953, 3192 RSC.
  10. P. B. Ayscough, Electron Spin Resonance in Chemistry, Methuen & Co Ltd, London(distributed in the USA by Barnes & Noble, Inc.), 1967, p. 451 Search PubMed.
  11. H. B. Gray, Inorg. Chem., 1962, 1, 111 CrossRef CAS.
  12. I. Siegel, Phys. Rev., 1964, 134, 193 Search PubMed.
  13. P. Meriaudeau and J. C. Vedrine, Nouv. J. Chim., 1978, 2, 133 Search PubMed.
  14. P. Tougne, A. P. Legrand, C. Sanchez and J. Livage, J. Phys. Chem. Solids, 1981, 42, 101 CrossRef CAS.
  15. P. Bardoux, D. Gourier and J. Livage, Colloids Surf., 1984, 11, 119 CrossRef.
  16. H. Che, B. Canosa and A. R. Gonzalez-Elipe, J. Phys. Chem., 1986, 90, 618 CrossRef CAS.
  17. G. Busca, G. Centi, L. Marchetti and F. Trifiro, Langmuir, 1986, 2(5), 5568.
  18. F. Cavani, G. Centi, E. Foresti, F. Trifiro and G. Busca, J. Chem. Soc., Faraday Trans. 1, 1988, 84, 237 RSC.
  19. G. Centi, S. Perathoner, F. Trifiro, A. Aboukaïs, C. F. Aissi and M. Guelton, J. Phys. Chem., 1992, 96, 2617 CrossRef CAS.
  20. W. P. Griffith and P. J. B. Lesniak, J. Chem. Soc. A, 1969, 1066 RSC.
  21. T. R. Gilson, O. F. Bizri and N. Cheetham, J. Chem. Soc., Dalton Trans., 1973, 291 RSC.
  22. I. L. Botto, E. J. Baran, J. C. Pedregosa and P. J. Aymonino, Monatsh. Chem., 1979, 110, 895 CAS.
  23. C. Sanchez, J. Livage and G. Lucazean, J. Raman Spectrosc., 1982, 12, 68 CAS.
  24. S. Seetharaman, H. L. Bhat and P. S. Narayanan, J. Raman Spectrosc., 1983, 14, 401 CAS.
  25. L. R. Le Coustumer, B. Taouk, M. Le Meur, E. Payen, M. Guelton and J. Grimblot, J. Phys. Chem., 1988, 92, 1230 CrossRef CAS.
  26. R. Larsson, B. Folkesson and G. Schön, Chem. Scr., 1973, 3, 88 Search PubMed.
  27. C. J. Groenenboom, G. Sawatzky, H. J. de L. Meijer and F. Jellinek, J. Organomet. Chem., 1974, 76, C4 CrossRef CAS.
  28. G. A. Sawatzky and E. Antonides, J. Phys. Colloq., C4 Suppl., 1974, 37, 117 Search PubMed.
  29. V. I. Nefedov, Ya. V. Salyn, A. A. Chertkov and L. N. Padurets, Zh. Neorg. Khim., 1974, 19, 1443 Search PubMed.
  30. V. I. Nefedov, D. Gati, B. F. Dzhurinskii, N. P. Sergushin and Ya. V. Salyn, Zh. Neorg. Khim., 1975, 20, 2307 Search PubMed.
  31. S. E. O'Donnell and M. T. Pope, J. Chem. Soc. Dalton Trans., 1976, 2290 RSC.
  32. E. Heath and O. W. Howarth, J. Chem. Soc. Dalton Trans., 1981, 1105 RSC.
  33. B. Taouk, M. Guelton, J. Grimblot and J. P. Bonnelle, J. Phys. Chem., 1988, 92, 6700 CrossRef CAS.
  34. H. Eckert and I. E. Wachs, J. Phys. Chem., 1989, 93, 6796 CrossRef CAS.
  35. K. V. R. Chary, V. Venkat Rao, V. M. Mastikhin, S. A. Veniaminov and A. A. Shibin, J. Mol. Catal., 1989, 50, 55 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.