Structure of pure SDS and DTAB micelles in brine determined by small-angle neutron scattering (SANS)

(Note: The full text of this document is currently only available in the PDF Version )

Magnus Bergström and Jan Skov Pedersen


Abstract

The geometrical structure of pure SDS and DTAB surfactant micelles in the absence of added salt as well as its dependence on the concentration of NaBr have been investigated at 40°C using small-angle neutron scattering (SANS). In contrast to previous SANS measurements on the same systems we have analysed the scattering data in the entire regime of scattering vectors that are relevant for determining the structure of the micelles. Our obtained results for pure surfactant micelles, as well as those of mixed catanionic micelles presented in a recent study, show somewhat unexpectedly that ordinary surfactant micelles are shaped as circular or elongated bilayers (tablets). Both SDS and DTAB micelles appeared to be disk-like in pure D2O and the corresponding data were best fitted with a model for (monodisperse) oblate ellipsoids of revolution with half axes a=12.0 Å, b=20.3 Å ([SDS]=1.0 wt.%) and a=12.4 Å, b=21.6 Å ([DTAB]=1.0 wt.%). The half axis b related to the disk radius increases in both cases with an increasing amount of added salt to about 23 Å (SDS) and 24 Å (DTAB) at [NaBr]=0.1 M and at about [NaBr]=0.2 M the SDS micelles become tablet-shaped, i.e. tri-axial ellipsoids with half axes a<b<c. For DTAB micelles the disk-to-tablet transition occurs between [NaBr]=0.5 and 0.7 M. As the amount of salt is further increased the micelles grow strongly with respect to length, but decrease slightly in width to about b=20 Å (SDS) and b=22 Å (DTAB) at [NaBr]=1.0 M. Half the thickness of the micelles varies only slightly with the solution state and is found to be about 75–90% of the fully extended hydrocarbon chain (=16.7 Å). Hence, all elongated micelles appeared to have an elliptical cross section with an axial ratio 1.5<b/a<1.6. At [NaBr]=0.7 M the SDS micelles are considerably elongated and polydisperse and their (volume-weighted) average length increases rapidly with surfactant concentration from about 200 Å at [SDS]=0.25 wt.% to about 400 Å at [SDS]=1.0 wt.%. At [NaBr]=1.0 M the SDS micelles were seen to be shaped as long flexible ribbons too long, i.e. several thousands of Angstroms, for their size distribution to be determined from our SANS data whereas DTAB micelles still were rather short, i.e. c=30 Å.


References

  1. C. Tanford, The hydrophobic effect, Wiley, New York, 1980 Search PubMed.
  2. D. W. R. Gruen and E. H. B. Lacey, in Surfactants in solution, ed. K. Mittal and B. Lindman, Plenum, New York, 1984, vol. 1, p. 279 Search PubMed.
  3. D. W. R. Gruen, J. Phys. Chem., 1985, 89, 153 CrossRef CAS.
  4. I. Szleifer, D. Kramer and A. Ben-Shaul, J. Chem. Phys., 1990, 92, 6800 CrossRef CAS.
  5. J. C. Eriksson, S. Ljunggren and U. Henriksson, J. Chem. Soc., Faraday Trans. 2, 1985, 81, 833 RSC.
  6. J. C. Eriksson and S. Ljunggren, J. Chem. Soc., Faraday Trans. 2, 1985, 81, 1209 RSC.
  7. S. Ljunggren and J. C. Eriksson, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 913 RSC.
  8. N. A. Mazer, G. B. Benedek and M. C. Carey, J. Phys. Chem., 1976, 80, 1075 CrossRef CAS.
  9. O. Söderman, M. Jonströmer and J. van Stam, J. Chem. Soc. Faraday Trans., 1993, 89, 1759 RSC.
  10. M. Törnblom, U. Henriksson and M. Ginley, J. Phys. Chem., 1994, 98, 7041 CrossRef.
  11. J. B. Hayter and J. Penfold, J. Chem. Soc, Faraday Trans. 1, 1981, 77, 1851 RSC.
  12. J. B. Hayter and J. Penfold, Colloid Polym. Sci., 1983, 261, 1022 CAS.
  13. D. Bendedouch and S. H. Chen, J. Phys. Chem., 1983, 87, 1653 CrossRef CAS.
  14. D. Bendedouch and S. H. Chen, J. Phys. Chem., 1984, 88, 648 CrossRef CAS.
  15. E. Y. Sheu, C. F. Wu and S. H. Chen, J. Phys. Chem., 1986, 90, 4179 CrossRef CAS.
  16. D. Bendedouch and S. H. Chen, J. Phys. Chem., 1983, 87, 153 CrossRef CAS.
  17. B. Cabane, R. Duplessix and T. Zemb, J. Phys., 1985, 46, 2161 Search PubMed.
  18. S. S. Berr, M. J. Coleman, R. R. M. Jones and J. S. Johnson, Jr., J. Phys. Chem., 1986, 90, 6492 CrossRef CAS.
  19. S. S. Berr and R. R. M. Jones, Langmuir, 1988, 4, 1247 CrossRef CAS.
  20. E. Y. Sheu and S. H. Chen, J. Phys. Chem., 1988, 92, 4466 CrossRef CAS.
  21. S. Kumar, S. L. David, W. K. Aswal, P. S. Goyal and Kabir-ud-Din, Langmuir, 1997, 13, 6461 CrossRef CAS.
  22. M. Almgren, J. C. Gimel, K. Wang, G. Karlsson, K. Edwards, W. Brown and K. Mortensen, J. Colloid Interface Sci., 1998, 202, 222 CrossRef CAS.
  23. S. S. Berr, J. Phys. Chem., 1987, 91, 4760 CrossRef CAS.
  24. M. Bergström and J. S. Pedersen, Langmuir, 1999, 15, 2250 CrossRef.
  25. M. Bergström and J. S. Pedersen, J. Phys. Chem. B, in press Search PubMed.
  26. J. S. Pedersen, J. Phys. IV , Coll. C8, 1993, 3, 491 Search PubMed.
  27. J. P. Cotton, in Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool For Colloidal and Polymeric Systems, ed. P. Lindner and T. Zemb, North-Holland, Amsterdam, 1991 Search PubMed.
  28. G. D. Wignall and F. S. Bates, J. Appl. Crystallogr., 1986, 20, 28 CrossRef.
  29. Y. Chevalier and T. Zemb, Rep. Prog. Phys., 1990, 53, 279 CrossRef CAS.
  30. J. S. Pedersen, D. Posselt and K. Mortensen, J. Appl. Crystallogr., 1990, 23, 321 CrossRef.
  31. B. R. Bevington, in Data Reduction and Error Analysis for Physical Sciences, McGraw-Hill, New York, 1969 Search PubMed.
  32. J. S. Pedersen, Adv. Colloid Interface Sci., 1997, 70, 171 CrossRef CAS.
  33. M. Bergström, J. S. Pedersen, P. Schurtenberger and S. U. Egelhaaf, J. Phys. Chem. B, in press Search PubMed.
  34. M. Kotlarchyk and S. H. Chen, J. Chem. Phys., 1983, 79, 2461 CrossRef CAS.
  35. J. B. Hayter and J. Penfold, Mol. Phys., 1981, 42, 409.
  36. J. P. Hansen and J. B. Hayter, Mol. Phys., 1982, 46, 651.
  37. P. Mittelbach and G. Porod, Acta Phys. Austriaca, 1962, 15, 122 Search PubMed.
  38. A. Guinier, Ann. Phys., 1939, 12, 161 CAS.
  39. J. S. Pedersen and P. Schurtenberger, J. Appl. Crystallogr., 1996, 29, 646 CrossRef CAS.
  40. T. Neugebauer, Ann. Phys. (Leipzig), 1943, 42, 509 Search PubMed.
  41. G. Jerke, J. S. Pedersen, S. U. Egelhaaf and P. Schurtenberger, Phys. Rev. E, 1997, 56, 5772 CrossRef CAS.
  42. J. S. Pedersen and P. Schurtenberger, Macromolecules, 1996, 29, 7602 CrossRef CAS.
  43. S. Cusack and A. Miller, J. Mol. Biol., 1981, 145, 525 CAS.
  44. J. S. Pedersen and M. C. Gerstenberg, Macromolecules, 1996, 29, 1363 CrossRef CAS.
  45. M. Corti and V. Degiorgio, Chem. Phys. Lett., 1978, 53, 237 CrossRef CAS.
  46. P. Schurtenberger, G. Jerke, C. Cavaco and J. S. Pedersen, Langmuir, 1996, 12, 2433 CrossRef CAS.
  47. G. Jerke, J. S. Pedersen, S. U. Egelhaaf and P. Schurtenberger, Langmuir, 1998, 14, 6013 CrossRef CAS.
  48. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 1525 RSC.
  49. J. C. Eriksson and S. Ljunggren, Langmuir, 1990, 6, 895 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.