Photoinduced charge separation of methylphenothiazine in microporous titanosilicate M-ETS-10 (M=Na++K+, H+, Li+, Na+, K+, Ni2+, Cu2+, Co2+) and Na+, K+-ETS-4 molecular sieves at room temperature

(Note: The full text of this document is currently only available in the PDF Version )

R. M. Krishna, A. M. Prakash, Vadim Kurshev and Larry Kevan


Abstract

The photoionization of methylphenothiazine in microporous titanosilicates M-ETS-10 (M=Na++K+, H+, Li+, Na+, K+, Ni+, Cu2+ and Co2+) and Na,K-ETS-4 molecular sieves with UV irradiation at room temperature is studied. Methylphenothiazine cation radicals (PC1+) are produced in M-ETS-10 molecular sieves and are characterized by electron paramagnetic resonance (EPR) and diffuse reflectance (DR) UV-vis spectroscopy. Microporous titanosilicate Na,K-ETS-10 and its ion-exchanged molecular sieves with alkali and transition metal ions are shown to be efficient heterogeneous hosts to accomplish stable net photoinduced electron transfer from methylphenothiazine molecules at room temperature. The photoyield of PC1+ cation radicals was enhanced by incorporation of protons into ion-exchange sites of Na,K-ETS-10. The photoionization efficiency of methylphenothiazine cation radicals decreases in the order H-ETS-10>Na,K-ETS-10>K-ETS-10>Na-ETS-10>Ni-ETS-10>Li-ETS-10>Cu-ETS-10>Co-ETS-10. For Na,K-ETS-4–PC1, no PC1+ radical is detected either by EPR or by DR spectroscopy. As the alkyl chain length of the phenothiazine increases from methyl to hexyl the photoionization yield of H-ETS-10 decreases. Thermogravimetric analysis results support this trend. It is found that the photochemistry in M-ETS-10 and Na,K-ETS-4 molecular sieves is sensitive to the metal ion, pore size and internal void space.


References

  1. M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC Press, Boca Raton, FL, 1989 Search PubMed.
  2. G. J. Meyer, in Molecular Level Artificial Photosynthetic Materials: Progress in Inorganic Chemistry, ed. K. D. Karlin, Wiley, New York, 1997, vol. 44, pp. 143, 167, 209 Search PubMed.
  3. K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems, Academic, New York, 1987 Search PubMed.
  4. E. G. Rabinovitch, Photosynthesis, Wiley, New York, 1969 Search PubMed.
  5. S. Boxer, Ann. Rev. Biophys. Chem., 1990, 19, 267 Search PubMed.
  6. K. Kalyanasundaram, Coord. Chem. Rev., 1982, 46, 159 CrossRef.
  7. R. Marcus and N. Sutin, Biochim. Biophys. Acta, 1985, 811, 265 CAS.
  8. M. R. Wasielewski, Chem. Rev., 1992, 92, 435 CrossRef CAS.
  9. P. K. Dutta and W. Turbeville, J. Phys. Chem., 1992, 96, 9410 CrossRef CAS; M. Borja and P. K. Dutta, Nature, 1993, 362, 43 CrossRef CAS; M. Ledney and P. K. Dutta, J. Am. Chem. Soc., 1995, 117, 7687 CrossRef CAS.
  10. V. Ramamurthy, Photochemistry in Organized and Constrained Media, VCH, New York, 1991 Search PubMed.
  11. Y. I. Kim and T. E. Mallouk, J. Phys. Chem., 1992, 96, 2879 CrossRef CAS.
  12. S. Sankaraman, K. B. Yoon, T. Yake and J. Kochi, J. Am. Chem. Soc., 1991, 113, 1419 CrossRef CAS.
  13. X. Liu, K. K. Liu and J. K. Thomas, J. Phys. Chem., 1989, 93, 4120 CrossRef CAS.
  14. B. Xiang and L. Kevan, Langmuir, 1995, 11, 860 CrossRef CAS.
  15. B. Xiang and L. Kevan, Langmuir, 1994, 10, 2688 CrossRef CAS.
  16. B. Xiang and L. Kevan, J. Phys. Chem., 1994, 98, 5120 CrossRef CAS.
  17. A. Slama-Schwok, M. Ottolenghi and D. Avnir, Nature, 1992, 355, 240 CAS.
  18. V. Ramamurthy and D. F. Eaton, Chem. Mater., 1994, 6, 1128 CrossRef CAS.
  19. N. J. Herron, Inclusion Phenom. Mol. Recognit. Chem., 1995, 21, 283 Search PubMed.
  20. N. Gfeller, S. Magelski and G. Calzaferri, J. Phys. Chem. B, 1998, 102, 2433 CrossRef CAS.
  21. M. W. Anderson, O. Terasaki, T. Ohsuna, A. Philippou, S. P. Mackay, A. Ferreira, J. Rocha and S. Lidin, Nature, 1994, 367, 347 CrossRef CAS.
  22. S. M. Kuznicki, K. A. Thrush, F. M. Allen, S. M. Levine, M. M. Hamil, D. T. Hayhurst and M. Mansour, in Synthesis of Microporous Materials, ed. M. L. Occelli and H. Robson, Van Nostrand Reinhold, New York, 1992, p. 427 Search PubMed.
  23. D. W. Breck, Zeolite Molecular Sieves, Wiley, New York, 1994, pp. 543, 550 Search PubMed.
  24. M. C. Hovey, J. Am. Chem. Soc., 1982, 104, 4196 CrossRef CAS.
  25. S. P. Massie, Chem. Rev., 1954, 54, 797 CrossRef.
  26. H. J. Shine, D. R. Thompson and C. Veneziani, J. Heterocycl. Chem., 1967, 4, 517 CAS.
  27. T. Shida, Electronic Absorption Spectra of Radical Ions, Elsevier, Amsterdam, 1988, p. 397 Search PubMed.
  28. D. B. Hugh, J. D. da Silva and M. I. V. Batista, in Excited States of Biological Molecules, ed. J. B. Birks, Wiley, London, 1974, p. 116 Search PubMed.
  29. R. M. Krishna, V. Kurshev and L. Kevan, Phys. Chem. Chem. Phys., 1999, 1, 2833 RSC.
  30. A. Ortiz, A. Gonzalez and J. I. Fernandez-Alonso, J. Solid State Chem., 1981, 40, 210 CrossRef CAS.
  31. Y. Yida, Bull. Chem. Soc. Jpn., 1971, 44, 663.
  32. G. Centi, C. Golinelli and F. Trifiro, Appl, Catal, Catal, 1988, 48, 13 Search PubMed.
  33. D. A. Wesner, F. P. Coenen and H. P. Bonzel, Langmuir, 1985, 1, 478 CrossRef CAS.
  34. T. Shida, T. Tanaka, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans., 1997, 93, 4151 RSC.
  35. T. Shida, T. Tanaka, T. Funabiki and S. Yoshida, J. Chem. Soc., Faraday Trans., 1998, 94, 695 RSC.
  36. CRC Handbook of Chemistry and Physics, ed. R. C. Weast, M. J. Astle and W. H. Beyer, CRC Press, Boca Raton, FL, 67th edn, 1987, p. F45 Search PubMed.
  37. A. Philippou and M. W. Anderson, Zeolites, 1996, 16, 98 CrossRef CAS.
  38. L. S. Levitt and H. F. Widing, in Progress in Physical Organic Chemistry, ed. R. W. Taft, Wiley, New York, 1976, vol. 12, ch. 5 Search PubMed.
  39. L. Louis, T. N. Tozer, L. D. Tuck and D. B. Loveland, J. Med. Chem., 1972, 15, 898 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.