A molecular dynamics simulation study of the unfolding of barnase induced by reaction field perturbation

(Note: The full text of this document is currently only available in the PDF Version )

Sabine Ringhofer, Hellfried Schreiber and Othmar Steinhauser


Abstract

We present a novel method to study protein unfolding by molecular dynamics (MD) simulations. A term resembling a reaction field is added as a perturbation to the Ewald sum, the most commonly used method to calculate electrostatic interactions in MD simulations. This reaction field perturbation (RFP) mimics qualitatively on the level of molecular interactions the changes in a protein solvent system when denaturants (e.g., urea or guadinium chloride) are added. The method is tunable by two parameters that control strength and “type’' (i.e., different regions of the electrostatic interactions can be weakened selectively) of the perturbations. The approach is tested by a detailed unfolding study of barnase based on several simulations, starting from two initial structures and with varying strength of the RFP. Unfolding is studied by following the changes in the radius of gyration, in the root mean square deviation and in the solvent accessible surface area of the protein. On the local level, the loss of secondary structure is monitored. In addition, the calculation of Voronoi volumes of individual side chains and the number of intruding waters as a function of simulation time are used to analyze the hydrophobic cores. We find an unfolding pathway and folding intermediates which agree well with the experimental data available and which are consistent with earlier simulation studies. Since under one set of RFP conditions the intermediate states are stable for approximately 100 ps, it is possible to characterize these states resembling the experimentally observed transition state and folding intermediate in great detail.


References

  1. J. Martin and F. U. Hartl, Curr. Opin. Struct. Biol., 1997, 7, 41 CrossRef CAS.
  2. S. E. Jackson, N. Elmasry and A. R. Fersht, Biochemistry, 1993, 32, 11270 CrossRef CAS.
  3. L. S. Itzhaki, D. E. Otzen and A. R. Fersht, J. Mol. Biol., 1995, 254, 260 CrossRef CAS.
  4. A. D. Miranker and C. M. Dobson, Curr. Opin. Struct. Biol., 1996, 6, 31 CrossRef CAS.
  5. K. Kuwajima, Protein: Struct. Funct. Genet., 1989, 6, 87 Search PubMed.
  6. O. B. Ptitsyn, Protein Folding, ed. T. E. Creighton, Freeman, San Francisco, 1992, pp. 243–300 Search PubMed.
  7. O. B. Ptitsyn, R. H. Pain, G. V. Semisotonov, E. Zerovnik and O. I. Razgulyaev, FEBS Lett., 1990, 262, 20 CrossRef CAS.
  8. V. Daggett and M. Levitt, Proc. Natl. Acad. Sci. USA, 1992, 89, 5142 CAS.
  9. V. Daggett and M. Levitt, J. Mol. Biol., 1993, 232, 600 CrossRef CAS.
  10. O. B. Ptitsyn and V. N. Uversky, FEBS Lett., 1994, 341, 15 CrossRef CAS.
  11. A. R. Fersht, Proc. Natl. Acad. Sci. USA, 1995, 92, 10869 CAS.
  12. P. A. Jennings and P. E. Wright, Science, 1993, 262, 892 CAS.
  13. C. Rischel, P. Thyberg, R. Rigler and F. M. Poulsen, J. Mol. Biol., 1996, 257, 877 CrossRef CAS.
  14. Y. Goto, L. J. Calciano and A. L. Fink, Proc. Natl. Acad. Sci. USA, 1990, 87, 573 CAS.
  15. Y. O. Kamatari, T. Konno, M. Kataoka and K. Akasaka, J. Mol. Biol., 1996, 259, 512 CrossRef CAS.
  16. M. M. Harding, D. H. Williams and D. N. Woolfson, Biochemistry, 1991, 30, 3120 CrossRef CAS.
  17. M. Bycroft, A. Matouschek, J. T. Kellis, Jr., L. Serrano and A. R. Fersht, Nature (London), 1990, 346, 488 CAS.
  18. K. F. Lau and K. A. Dill, Macromolecules, 1989, 22, 3986 CrossRef CAS.
  19. K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee, P. D. Thomas and H. S. Chan, Protein Sci., 1995, 4, 561 CAS.
  20. K. Yue, M. Fiebig, P. D. Thomas, H. S. Chan, E. I. Shakhnovich and K. A. Dill, Proc. Natl. Acad. Sci. USA, 1995, 92, 325 CAS.
  21. E. Shakhnovich, Curr. Opin. Struct. Biol., 1997, 7, 29 CrossRef CAS.
  22. C. B. Anfinsen, E. Haber, M. Sela and F. White, Jr., Proc. Natl. Acad. Sci. USA, 1961, 47, 1309 CAS.
  23. C. B. Anfinsen, Science, 1973, 181, 223 CAS.
  24. A. V. Finkelstein, Protein Eng., 1997, 10, 843 CrossRef CAS.
  25. A. Caflisch and M. Karplus, Proc. Natl. Acad. Sci. USA, 1994, 91, 1746 CAS.
  26. A. Caflisch and M. Karplus, J. Mol. Biol., 1995, 252, 672 CrossRef CAS.
  27. C. J. Bond, K.-B. Wong, J. Clarke, A. R. Fersht and V. Daggett, Proc. Natl. Acad. Sci. USA, 1997, 94, 13409 CrossRef CAS.
  28. A. Li and V. Daggett, J. Mol. Biol., 1998, 275, 677 CrossRef CAS.
  29. V. Daggett, A. Li and A. R. Fersht, J. Am. Chem. Soc., 1998, 120, 12740 CrossRef CAS.
  30. L. Pugliese, M. Prévost and S. J. Wodak, J. Mol. Biol., 1995, 251, 432 CrossRef CAS.
  31. J. Tirado-Rives, M. Orozco and W. L. Jorgensen, Biochemistry, 1997, 36, 7313 CrossRef CAS.
  32. D. B. Kitchen, L. H. Reed and R. M. Levy, Biochemistry, 1992, 31, 10083 CrossRef CAS.
  33. B. Wroblowski, J. F. Díaz, K. Heremans and Y. Engelbroghs, Protein: Struct. Funct. Genet., 1996, 25, 446 Search PubMed.
  34. M. A. Williams, J. M. Thornton and J. M. Goodfellow, Protein Eng., 1997, 10, 895 CrossRef CAS.
  35. D. O. V. Alonso and V. Daggett, J. Mol. Biol., 1995, 247, 501 CrossRef CAS.
  36. J. M. Goodfellow, M. Knaggs, M. A. Williams and J. M. Thornton, Faraday Discuss., 1996, 103, 339 RSC.
  37. S. Toba and K. M. Merz, Jr., J. Am. Chem. Soc., 1997, 119, 9939 CrossRef CAS.
  38. P. H. Hünenberger, A. E. Mark and W. F. van Gunsteren, Protein: Struct. Funct. Genet., 1995, 21, 196 Search PubMed.
  39. R. L. Baldwin, TIBS, 1989, 14, 291 Search PubMed.
  40. R. W. Hartley, Biochemistry, 1968, 7, 2401 CrossRef CAS.
  41. Y. Mauguen, R. W. Hartly, E. J. Dodson, G. G. Dodson, G. Bricogne, C. Chothia and A. Jack, Nature (London), 1982, 297, 162 CAS.
  42. M. Bycroft, S. Ludvigsen, A. R. Fersht and F. M. Poulsen, Biochemistry, 1991, 30, 8697 CrossRef CAS.
  43. A. R. Fersht, A. Matouschek and L. Serrano, J. Mol. Biol., 1992, 224, 771 CAS.
  44. L. Serrano, J. T. Kellis, Jr., P. Cann, A. Matouschek and A. R. Fersht, J. Mol. Biol., 1992, 224, 783 CAS.
  45. L. Serrano, A. Matouschek and A. R. Fersht, J. Mol. Biol., 1992, 224, 805 CAS.
  46. A. Matouschek, L. Serrano and A. R. Fersht, J. Mol. Biol., 1992, 224, 819 CrossRef CAS.
  47. A. Matouschek, L. Serrano, B. Meiering, M. Bycroft and A. R. Fersht, J. Mol. Biol., 1992, 224, 837 CAS.
  48. L. Serrano, A. Matouschek and A. R. Fersht, J. Mol. Biol., 1992, 224, 847 CAS.
  49. A. M. Buckle, K. Henrick and A. R. Fersht, J. Mol. Biol., 1993, 234, 847 CrossRef CAS.
  50. P. A. Dalby, M. Oliveberg and A. R. Fersht, J. Mol. Biol., 1998, 276, 625 CrossRef CAS.
  51. P. A. Dalby, J. Clarke, C. M. Johnson and A. R. Fersht, J. Mol. Biol., 1998, 276, 647 CrossRef CAS.
  52. C. J. F. Böttcher, Theory of electric polarisation, ElsevierAmsterdam, 1952 Search PubMed.
  53. S. W. de Leeuw, J. W. Perram and E. R. Smith, Proc. R. Soc. London, Ser. A, 1980, 373, 27 CrossRef CAS.
  54. S. W. de Leeuw, J. W. Perram and E. R. Smith, Proc. R. Soc. London, Ser. A, 1980, 373, 57 Search PubMed.
  55. M. P. Allen and D. J. Tildesley, Computer simulation of liquids: chapter, 5.5.2 The Ewald sum, Clarendon Press, Oxford, 1987 Search PubMed.
  56. F. C. Bernstein, T. F. Koetzle, G. J. B. Williams, E. F. Meyer, Jr. and M. Tasumi, J. Mol. Biol., 1977, 12, 535.
  57. D. A. Perlman, D. A. Case, J. W. Caldwell, S. W. Ross, T. E. Cheatham III, D. M. Ferguson, G. L. Seibel, U. C. Singh, P. K. Weiner and P. A. Kollman, AMBER 4.1, University of California, San Francisco, 1995 Search PubMed.
  58. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr., D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, J. Am. Chem. Soc., 1995, 117, 5179 CrossRef CAS.
  59. T. Darden, D. York and L. Pedersen, J. Chem. Phys., 1993, 98, 10089 CrossRef CAS.
  60. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, J. Chem. Phys., 1995, 103, 8577 CrossRef CAS.
  61. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Imprey and M. L. Klein, J. Chem. Phys., 1983, 79, 926 CrossRef CAS.
  62. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola and J. R. Haak, J. Chem. Phys., 1984, 81, 3684 CrossRef CAS.
  63. W. F. van Gunsteren and H. J. C. Berendsen, Mol. Phys., 1977, 34, 1311 CAS.
  64. J. P. Rykaert, G. Ciccotti and H. J. C. Berendsen, J. Comput. Phys., 1977, 23, 327 CrossRef.
  65. W. Kabsch and C. Sander, Biopolymers, 1983, 22, 2577 CrossRef CAS.
  66. S. J. Hubbard and J. M. Thornton, Department of Biochemistry and Molecular Biology, University College London, 1993 Search PubMed.
  67. M. Gerstein and C. Chothia, Proc. Natl. Acad. Sci. USA, 1996, 93, 10167 CrossRef CAS.
  68. E. Paci and M. Marchi, Proc. Natl. Acad. Sci. USA, 1996, 93, 11609 CrossRef CAS.
  69. J. Pontius, J. Richelle and S. J. Wodak, J. Mol. Biol., 1996, 264, 121 CrossRef CAS.
  70. Y. Harpaz, M. Gerstein and C. Chothia, Structure, 1994, 2, 641 CAS.
  71. M. Gerstein, J. Tsai and M. Levitt, J. Mol. Biol., 1995, 249, 955 CrossRef CAS.
  72. G. A. Jeffrey and W. Saenger, Hydrogen bonding in biological structures, Springer Verlag, Berlin Heidelberg, 1991 Search PubMed.
  73. C. Chothia, Nature (London), 1975, 254, 304 CAS.
  74. A. Horovitz, L. Serrano and A. R. Fersht, J. Mol. Biol., 1991, 219, 5 CAS.
  75. A. R. Fersht, FEBS Lett., 1993, 325, 5 CrossRef CAS.
  76. P. S. Kim and R. L. Baldwin, Annu. Rev. Biochem., 1990, 59, 631 CrossRef CAS.
  77. P. J. Kraulis, J. Appl. Crystallogr., 1991, 24, 946 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.