Construction of kinetic phase diagrams

(Note: The full text of this document is currently only available in the PDF Version )

J. Los and E. Flöter


Abstract

It is a noted fact that the composition of a mixed solid phase grown at non-equilibrium can deviate from the equilibrium composition due to the very low diffusion rate in the solid phase. We present an analytical model for the determination of the kinetic composition of a binary solid phase that is growing from a solution at a given supersaturation, giving rise to kinetic phase diagrams. The model is derived for growth at rough surfaces but is expected to apply also to growth at non-roughened surfaces. Kinetic phase diagrams for different undercooling and excess energy parameters are presented and discussed. If the interaction parameters, describing the excess free energy, are large the model equations can have two stable solutions, which implies the simultaneous growth of two solid phases with different compositions. This kinetic phase separation depends on the undercooling and the composition dependence of the attachment probabilities.


References

  1. A. I. Kitaigorodskii, Mixed Crystals, Springer-Verlag, Berlin, 1984 Search PubMed.
  2. P. van Eikeren, in Chiral separations: applications and technology, ed. S. Ahuja, American Chemical Society, Washington, DC, 1997, ch. 2 Search PubMed.
  3. E. A. Guggenheim, Thermodynamics, North-Holland, Amsterdam, 5th edn., 1967 Search PubMed.
  4. D. C. Wallace, Thermodynamics of Crystals, Wiley, New York, 1972 Search PubMed.
  5. C. H. P. Lupis, Chemical Thermodynamics of Materials, North-Holland, New York, 1983 Search PubMed.
  6. T. A. Cherepanova, J. P. van der Eerden and P. Bennema, J. Cryst. Growth, 1978, 44, 537 CrossRef CAS.
  7. T. A. Cherepanova and J. B. Dzelme, Cryst. Res. Technol., 1981, 16, 399 CAS.
  8. H. Pfeiffer, Th. Klupsch and W. Haubenreisser, Microscopic Theory of Crystal Growth, Akademie Verlag, Berlin, 1989 Search PubMed.
  9. P. Rudolph, Mater. Sci. Forum, 1998, 276, 1 Search PubMed.
  10. P. Bennema and J. P. van der Eerden, J. Cryst. Growth, 1977, 42, 201 CrossRef CAS.
  11. L. H. Wesdorp, PhD thesis, Technische Universiteit Delft, The Netherlands, 1990.
  12. H. A. J. Oonk, D. Mondieig, Y. Haget and M. A. Cueveas-Diarte, J. Chem. Phys., 1998, 108, 715 CrossRef CAS.
  13. W. J. M. van der Kemp, J. G. Blok, P. R. van der Linde, H. A. J. Oonk, A. Schuijff and M. L. Verdonk, Thermochim. Acta, 1993, 225, 17 CrossRef CAS.
  14. J. M. Prausnitz, Molecular Thermodynamics of Fluid Phase Equilibria, Prentice Hall, Englewood Cliffs, NJ, 1998 Search PubMed.
  15. F. Rosenberger, Fundamentals of Crystal Growth I, Springer, Berlin, 1979 Search PubMed.
  16. J. Los and E. Flöter, unpublished work.
  17. W. Burton, N. Cabrera and C. Frank, Philos. Trans. R. Soc. London, Ser. A, 1951, 243, 299 Search PubMed.
  18. P. Bennema, J. Cryst. Growth, 1996, 166, 17 CrossRef CAS.
  19. G. H. Gilmer and P. Bennema, J. Cryst. Growth, 1972, 13/14, 148 CrossRef.
  20. E. van Veenendaal, P. J. C. M. van Hoof, J. van Suchtelen, W. J. P. van Enckevort and P. Bennema, Surf. Sci., 1998, 417, 121 CrossRef CAS.
  21. H. A. Wilson, Philos. Mag., 1900, 50, 238 Search PubMed; A. Frenkel, Philos. Z. Sowjetunion, 1932, 1, 498 Search PubMed.
  22. J. P. van der Eerden, in Handbook of Crystal Growth 1a, ed. D. T. J. Hurle, North-Holland, Amsterdam, 1993, 307 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.