Finite-size scaling of kinetic quantities

(Note: The full text of this document is currently only available in the PDF Version )

A. A. Tarasenko, F. Nieto and C. Uebing


Abstract

In this contribution we analyze the finite-size scaling behavior of the tracer and jump surface diffusion coefficients, Dt and Dj, in the vicinity of a second order phase transition. For this purpose, we use a two-dimensional lattice gas model of repulsively interacting particles on a square lattice. For all lattice sizes L studied, the temperature dependences of Dt and Dj at half coverage are smooth functions, having an inflexion point at the critical temperature. Their derivatives, ∂Dt/∂(1/kBT) and ∂Dj/∂(1/kBT), exhibit cusp-like maxima which (a) are sharply pronounced and (b) converge to Tc for large lattice sizes. The finite-size behavior of Dt and Dj can be described by critical exponents σt=0.665±0.003 and σj=0.585±0.003.


References

  1. M. E. Fisher, in Critical Phenomenon, ed. M. S. Green, Academic Press, New York, 1971, vol. 51, p. 1 Search PubMed.
  2. M. N. Barber, in Phase Transitions and Critical Phenomena, ed. C. Domb and J. L. Lebowitz, Academic Press, New York, 1983, vol. 8, p. 145 Search PubMed.
  3. M. P. Nightingale, J. Appl. Phys., 1982, 53, 7928.
  4. V. Privman and M. E. Fisher, J. Stat. Phys., 1983, 33, 385.
  5. E. Brézin and J. Zinn-Justin, Nucl. Phys. B, 1985, 257, 867 CrossRef.
  6. K. Binder, J. Comput. Phys., 1985, 59, 1 CAS.
  7. J. L. Cardy, in Phase T ransitions and Critical Phenomena, ed. C. Domb and J. L. Lebowitz, Academic Press, New York, 1987, vol. 11, p. 55 Search PubMed.
  8. K. Binder, Ferroelectrics, 1987, 73, 43.
  9. V. Privman, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. V. Privman, World Scientific, Singapore, 1990, p. 1 Search PubMed.
  10. K. Binder, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. V. Privman, World Scientific, Singapore, 1990, p. 173 Search PubMed.
  11. D. P. Landau, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. V. Privman, World Scientific, Singapore, 1990, p. 223 Search PubMed.
  12. J. Rudnick, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. V. Privman, World Scientific, Singapore, 1990, p. 141 Search PubMed.
  13. A. P. Young, in Finite Size Scaling and Numerical Simulation of Statistical Systems, ed. V. Privman, World Scientific, Singapore 1990, p.465 Search PubMed.
  14. C. Uebing and R. Gomer, J. Chem. Phys., 1991, 95, 7626 CrossRef CAS.
  15. C. Uebing and R. Gomer, Surf. Sci., 1995, 331, 930 CrossRef.
  16. C. Uebing and R. Gomer, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1138 CAS.
  17. C. Uebing, Nato, ASI Ser., Ser. B, 1997, 360, 443 Search PubMed.
  18. D. A. Read and G. Ehrlich, Surf. Sci., 1981, 105, 603 CrossRef CAS.
  19. R. Gomer, Rep. Prog. Phys., 1990, 53, 917.
  20. V. P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces, Plenum, New York, 1991 Search PubMed.
  21. V. P. Zhdanov, Phys. Lett. A., 1992, 161, 556 CrossRef CAS.
  22. A. V. Myshlyavtsev, A. P. Stepanov, C. Uebing and V. P. Zhdanov, Phys. Rev. B, 1995, 52, 5977 CrossRef CAS.
  23. A. A. Tarasenko, L. Jastrabik, F. Nieto and C. Uebing, Phys. Rev. B., 1999, 59, 8252 CrossRef CAS.
  24. A. A. Tarasenko, L. Jastrabik, F. Nieto and C. Uebing, Phys. Chem. Chem. Phys., 1999, 1, 1583 RSC.
  25. L. Onsager, Phys. Rev., 1944, 65, 117 CrossRef CAS.
  26. C. N. Yang, Phys. Rev., 1942, 85, 808 CrossRef.
  27. B. M. McCoy and T. T. Wu, The two-dimensional Ising model, Harvard University, Cambridge, MA 1977 Search PubMed.
  28. For a discussion of the general temperature dependence of Dt and Dj over a much wider range of temperatures, see ref. 14..
  29. K. Binder, Rep. Prog. Phys., 1997, 60, 488 CrossRef.
  30. F. Nieto and C. Uebing, Physica A, 1998, 258, 123 CrossRef.
  31. K. Binder, Z. Phys. B, 1981, 43, 119.
  32. K. K. Kaski, K. Binder and J. D. Gunton, Phys. Rev. B, 1984, 29, 3996 CrossRef.
  33. D. P. Landau and K. Binder, Phys. Rev. B, 1985, 31, 5946 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.