Atmospheric chemistry of benzaldehyde: UV absorption spectrum and reaction kinetics and mechanisms of the C6H5C(O)O2 radical

(Note: The full text of this document is currently only available in the PDF Version )

Françoise Caralp, Virginie Foucher, Robert Lesclaux, Timothy J. Wallington and Michael D. Hurley


Abstract

Flash photolysis–UV absorption and long pathlength FTIR–smog chamber studies of several reactions involving C6H5C(O) and C6H5C(O)O2 radicals have been performed. It was determined that reaction of Cl atoms with C6H5CHO proceeds via abstraction of the aldehydic hydrogen to give benzoyl radicals. The sole atmospheric fate of benzoyl radicals is addition of O2 to give peroxybenzoyl radicals. Reaction of C6H5C(O) radicals with molecular chlorine proceeds with a rate constant of (5.9±0.4)×10-11 cm3 molecule-1 s-1 at 296 K and 1–700 Torr total pressure. The UV spectrum of C6H5C(O)O2 radicals (245–300 nm) and the self reaction were investigated simultaneously, yielding σmax=(2.0±0.1)×10-17 cm2 molecule-1 at 245 nm and k16=(3.1±1.4)×10-13 exp[(1110±160) K/T] cm3 molecule-1 s-1, measured from 298 to 460 K. At 338 K, C6H5C(O)O2 radicals react with NO with a rate constant of (1.6±0.4)×10-11 cm3 molecule-1 s-1. At 296 K, C6H5C(O)O2 radicals react with NO2 with a rate constant of (1.1±0.3)×10-11 cm3 molecule-1 s-1 to form C6H5C(O)O2NO2, which undergoes thermal decomposition at a rate of k-4=(2.1-1.5+5.0)×1016 exp[-(13600±400)K/T] s-1 in one atmosphere of air. At 296 K in 100–700 Torr of air k[C6H5C(O)O2+NO]/k[C6H5C(O)2+NO2]=1.44±0.15. Relative rate methods were used to measure k[Cl+C6H5C(O)Cl]=(1.1±0.2)×10-15 cm3 molecule-1 s-1 at 296 K. Uncertainty limits are all two standard deviations. Results are discussed with respect to the literature data and the atmospheric chemistry of benzaldehyde.


References

  1. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics, John Wiley & Sons, Inc., New York, 1998 Search PubMed.
  2. J. R. Odum, T. P. W. Jungkamp, R. J. Griffin, R. C. Flagan and J. H. Seinfeld, Science, 1997, 276, 96 CrossRef CAS.
  3. J. M. Heuss and W. A. Glasson, Environ. Sci. Technol., 1968, 12, 1109.
  4. R. Atkinson, J. Phys. Chem. Ref. Data, 1984, 13, 315 CAS.
  5. R. A. Kenley and D. G. Hendry, J. Am. Chem. Soc., 1982, 104, 220 CrossRef CAS.
  6. F. Kirchner, F. Zabel and K. H. Becker, Chem. Phys. Lett., 1992, 191, 169 CrossRef CAS.
  7. T. J. Wallington, C. A. Gierczak, J. C. Ball and S. M. Japar, Int. J. Chem. Kinet., 1989, 21, 1077 CrossRef CAS.
  8. P. D. Lightfoot, R. Lesclaux and B. Veyret, J. Phys. Chem., 1990, 94, 700 CrossRef CAS.
  9. W. B. DeMore, M. J. Molina, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, C. E. Kolb and A. R. Ravishankara, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, NASA-JPL Publication 97-4 Jet Propulsion Laboratory, Pasadena, 1997 Search PubMed.
  10. B. Nozière, R. Lesclaux, M. D. Hurley, M. A. Dearth and T. J. Wallington, J. Phys. Chem., 1994, 98, 2864 CrossRef CAS.
  11. T. J. Wallington and M. D. Hurley, Chem. Phys. Lett., 1992, 189, 437 CrossRef CAS.
  12. T. E. Møgelberg, A. Feilberg, A. M. B. Giessing, J. Sehested, T. J. Wallington and O. J. Nielsen, J. Phys. Chem., 1995, 99, 17386 CrossRef CAS.
  13. E. W. Kaiser and T. J. Wallington, J. Phys. Chem., 1995, 99, 8669 CrossRef CAS.
  14. W. G. Mallard, F. Westley, J. T. Herron, R. F. Hampson and D. H. Frizzell, NIST Chemical Kinetics Database, Version 6.0, NIST, Gaithersburg, MD, 1994 Search PubMed.
  15. C. E. Dade, T. M. Lenhart and K. D. Bayes, J. Photochem., 1982, 20, 1 CrossRef.
  16. B. W. Gay, R. C. Noonan, J. J. Bufalini and P. L. Hanst, Environ. Sci. Technol., 1976, 10, 82 CAS.
  17. H. Niki, P. D. Maker, C. M. Savage and L. P. Breitenbach, Fourier transform infrared (FTIR) studies of gaseous and particulate nitrogenous com pounds, in Nitrogenous Air Pollutants, ed. D. Grosjean, Ann Arbor Science Publishers, Ann Arbor, MI, 1979 Search PubMed.
  18. J. Sehested, L. K. Christensen, T. E. Møgelberg, O. J. Nielsen, T. J. Wallington and A. Guschin, J. Phys. Chem. A, 1998, 102, 1779 CrossRef CAS.
  19. E. R. Stephens, Anal. Chem., 1964, 36, 928 CrossRef CAS.
  20. T. Ohta and I. Mizoguchi, Environ. Sci. Technol., 1981, 15, 1229 CAS.
  21. F. Berho, F. Caralp, M. T. Rayez, R. Lesclaux and E. Ratajczak, J. Phys. Chem. A, 1998, 102, 1 CrossRef CAS.
  22. J. Platz, O. J. Nielsen, T. J. Wallington, J. C. Ball, M. D. Hurley, A. M. Straccia, W. F. Schneider and J. Sehested, J. Phys. Chem. A, 1998, 102, 7964 CrossRef CAS.
  23. T. Yu and M. C. Lin, J. Am. Chem. Soc., 1993, 115, 4371 CrossRef CAS.
  24. R. Lesclaux, in Peroxy Radicals, ed. Z. E. Alfassi, John Wiley & Sons, Ltd., New York, 1997 Search PubMed.
  25. F. G. Simon, W. Schneider and G. K. Moorgat, Int. J. Chem. Kinet., 1990, 22, 791 CAS.
  26. M. M. Maricq, J. J. Szente, G. A. Khitrov and J. S. Francisco, J. Phys. Chem., 1996, 100, 4514 CrossRef CAS.
  27. I. Bridier, PhD Thesis, Bordeaux, 1991.
  28. A. Tomas, E. Villenave and R. Lesclaux, Proceedings of the second workshop of EUROTRAC 2 subproject: “Chemical Mechanism Development”(GPP27), Karlsruhe, Germany, 1998, to be published.
  29. M. M. Maricq and J. J. Szente, J. Phys. Chem., 1996, 100, 4507 CrossRef CAS.
  30. M. M. Maricq, J. J. Szente, G. A. Khitrov and J. S. Francisco, J. Phys. Chem., 1993, 98, 9522 CrossRef CAS.
  31. T. J. Wallington, T. Ellermann, O. J. Nielsen and J. Sehested, J. Phys. Chem., 1994, 98, 2346 CrossRef CAS.
  32. J. Sehested, L. K. Christensen, T. E. Møgelberg, O. J. Nielsen, T. J. Wallington, A. G. Guschin, J. J. Orlando and G. S. Tyndall, J. Phys. Chem. A, 1998, 102, 1779 CrossRef CAS.
  33. Z. Tao and Z. Li, Int. J. Chem. Kinet., 1999, 29, 65 CrossRef.
  34. R. L. Kuntz, S. L. Kopczynski and J. J. Bufalini, Environ. Sci. Technol., 1973, 7, 1119 CAS.
  35. W. P. L. Carter and R. Atkinson, Environ. Sci. Technol., 1987, 21, 670 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.