Gas phase multicollisional reactions of metal cluster cations with water molecules

(Note: The full text of this document is currently only available in the PDF Version )

Victor A. Mikhailov, Perdita E. Barran and Anthony J. Stace


Abstract

Reactions within complexes consisting of metal cluster cations and water molecules have been studied using a pulsed arc cluster source (PACS) and a reflectron time-of-flight mass spectrometer. The mass spectra obtained from metal–water cluster ions reveals extensive dehydrogenation of the associated water molecules resulting in the formation of metal-oxide clusters of the general form MMOP(OH)+ (where M=copper, barium and holmium). For clusters with barium, and holmium, the dehydrogenation occurs from P[greater than or equal, slant]1 and for copper for P[greater than or equal, slant]3. These metal oxide and hydroxide products are more abundant than both that of the bare metal clusters MM+ and the associated hydrated metal clusters MM+(H2O)N. The stability of the metal oxide clusters as determined by the relative abundances of these species as a function of N and P is seen to correspond to oxidation numbers accessible to the metal ions. The correspondence between the formal oxidation number of a metal and its propensity for oxide formation is investigated. Possible mechanisms for the formation of the observed complex ions are proposed. For complexes containing HoM+ the variation of the abundances with cluster size is discussed.


References

  1. C. T. Scurlock, S. H. Pullins, J. E. Reddic and M. A. Duncan, Annu. Rev. Chem., 1997, 48, 69 Search PubMed.
  2. M. A. Duncan, J. Chem. Phys., 1996, 104, 4591 CrossRef.
  3. M. B. Knickelbein and G. M. Koretsky, J. Phys. Chem. A, 1998, 102, 580 CrossRef CAS.
  4. E. A. Steel, K. M. Merz, A. Selinger and A. W. Castleman, J. Phys. Chem., 1995, 99, 7829 CrossRef CAS.
  5. D. Feller, E. D. Glendening and W. A. de Jong, J. Chem. Phys., 1999, 110, 1475 CrossRef CAS.
  6. W. Lu and S. Yang, J. Phys. Chem. A, 1998, 102, 1954 CrossRef CAS.
  7. W. Lu and S. Yang, J. Phys. Chem. A, 1998, 102, 825 CrossRef CAS.
  8. L. Bewig, U. Buck, S. Rakowski, M. Reymann and C. Steinbach, J. Phys. Chem. A, 1998, 102, 1124 CrossRef CAS.
  9. A. Irigoras, J. E. Fowler and J. M. Ugalde, J. Phys. Chem. A, 1998, 102, 293 CrossRef CAS.
  10. H. Sato, Res. Chem. Intermed., 1993, 19, 67 CAS.
  11. C. Berg, M. Beyer, U. Achanz, S. Joos, G. Niedner-Schatteburg and V. E. Bondybey, J. Chem. Phys., 1998, 108, 5398 CrossRef CAS.
  12. U. Buck and C. Steinbach, J. Phys. Chem. A, 1998, 102, 7333 CrossRef CAS.
  13. A. Lapicki, D. M. Peiris and N. Jason, J. Phys. Chem. A, 1999, 103, 226 CrossRef CAS.
  14. P. E. Barran, V. A. Mikhailov, A. J. Stace, J. Phys, Chem. A, in the press Search PubMed.
  15. H. R. Siekmann, Ch. Luder, J. Faehrmann, H. O. Lutz and K. H. Meiwes-Broer, Z. Phys. D., 1991, 20, 417 CAS.
  16. Cha Chia-Yen, G. Gantefor and W. Eberhardt, Rev. Sci. Instrum., 1992, 63, 5661 CrossRef.
  17. M. Svanberg and J. B. C. Pettersson, J. Phys. Chem. A, 1998, 102, 1865 CrossRef CAS.
  18. L. X. Dang and D. E. Smith, J. Chem. Phys., 1993, 99, 6950 CrossRef CAS.
  19. Z. Shi, J. V. Ford, S. Wei and A. W. Castleman, J. Chem. Phys., 1993, 99, 8009 CrossRef CAS.
  20. M. B. Knickelbein, Chem. Phys. Lett., 1992, 192, 129 CrossRef CAS.
  21. J. A. Kerr, in Chemical Rubber Company Handbook of Chemistry and Physics, ed. D. R. Lide, CRC Press, Boca Raton, FL, 77th edn., 1996 Search PubMed.
  22. W. M. Mueller, J. P. Blackledge, G. C. Libowitz, Metal Hydrides, Academic Press, London, 1968 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.