Experimental determination of singly scattered light close to the critical point in a polystyrene–cyclohexane mixture

(Note: The full text of this document is currently only available in the PDF Version )

Jörg-Michael Schröder, Simone Wiegand, Lisa B. Aberle, Malte Kleemeier and Wolffram Schröer


Abstract

In turbid media the presence of multiple scattering constitutes a major complication for the analysis of the intensity and of the intensity correlation functions of the scattered light. The 3D-cross-correlation technique provides an effective means to determine the single scattering intensity and to suppress the influence of multiple scattering to the time dependence of correlation functions. The technique is applied to study the temperature dependence of the critical fluctuations of a solution of polystyrene (Mw=1.11×105 g mol-1) in cyclohexane. We show that the single scattering intensity determined for a scattering angle of ϑ=90° can be described by the Ornstein–Zernike function over the entire temperature range of 313.15–293.49 K. Good agreement between experiment and Monte Carlo simulations of the scattering processes is found for the ratio of singly scattered light to the total scattering intensity.


References

  1. J. V. Sengers and J. M. H. Levelt Sengers, in Progress in Liquid Physics, ed. C. Croxton, John Wiley & Sons, New York, 1978, p. 103 Search PubMed.
  2. M. E. Fisher, Rev. Mod. Phys., 1998, 70, 653 CrossRef.
  3. R. Kita, K. Kubota and T. Dobashi, Phys. Rev. E, 1998, 58, 793 CrossRef CAS.
  4. J. G. Shanks and J. V. Sengers, Phys. Rev. A, 1988, 38, 885 CrossRef CAS.
  5. J. K. G. Dhont, Physica A, 1983, 120, 238 CrossRef.
  6. J. K. G. Dhont, Physica A, 1985, 129, 374 CrossRef.
  7. A. E. Bailey and D. S. Cannell, Phys. Rev. E, 1994, 50, 4853 CrossRef CAS.
  8. C. Urban and P. Schurtenberger, J. Colloid Interface Sci., 1998, 207, 150 CrossRef CAS.
  9. L. B. Aberle, P. Hülstede, S. Wiegand, W. Schröer and W. Staude, Appl. Opt., 1998, 37, 6511.
  10. M. Drewel, J. Ahrens and U. Podschus, J. Opt. Soc. Am. A, 1990, 7, 206 Search PubMed.
  11. E. Overbeck and C. Sinn, J. Mod. Opt., 1999, 46, 303 CrossRef.
  12. W. V. Meyer, D. S. Cannell, A. E. Smart, T. W. Taylor and P. Tin, Appl. Opt., 1997, 36, 7551.
  13. U. Nobbmann, S. W. Jones and B. J. Ackerson, Appl. Opt., 1997, 36, 7571.
  14. G. D. J. Phillies, Phys. Rev. A, 1981, 24, 1939 CrossRef CAS.
  15. K. Schätzel, J. Mod. Opt., 1991, 38, 1849 CAS.
  16. J. A. Lock, Appl. Opt., 1997, 36, 7559.
  17. V. I. Ovod, Appl. Opt., 1998, 37, 7856.
  18. Th. Engels, L. Belkoura and D. Woermann, Ber. Bunsen-Ges. Phys. Chem., 1988, 92, 1544 Search PubMed.
  19. L. B. Aberle, S. Wiegand, W. Schröer and W. Staude, Progr. Colloid Polym. Sci., 1997, 104, 121 Search PubMed.
  20. L. B. Aberle, M. Kleemeier, P. Hülstede, S. Wiegand, W. Schröer and W. Staude, J. Phys. D: Appl. Phys., 1999, 32, 22 CrossRef CAS.
  21. R. F. Chang, H. Burstyn and J. V. Sengers, Phys. Rev. A, 1979, 19, 866 CrossRef CAS.
  22. V. G. Puglielli and N. C. Ford, Phys. Rev. Lett., 1970, 25, 143 CrossRef CAS.
  23. S. Wiegand, M. E. Briggs, J. M. H. Levelt Sengers, M. Kleemeier and W. Schröer, J. Chem. Phys., 1998, 109, 9038 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.