Density functional theory: X-ray reflectivity studies of pure fluid liquid/vapour interfaces

(Note: The full text of this document is currently only available in the PDF Version )

T Wadewitz and J Winkelmann


Abstract

Although there are numerous model independent methods for the extraction of a density profile from X-ray reflectivity data, for many systems there are fundamental limitations to the uniqueness of profiles so determined owing to the limited range of scattering data and the nature of the inverse transformation. Based on density functional theory (DFT) of inhomogeneous fluids we model the liquid/vapour interface of some pure simple liquids (Ar, N2, Kr, CCl4). Attractive contributions to the Helmholtz free energy are treated by a mean-field approximation (MF). Both local density approximation (LDA) and smoothed density approximation (SDA) are applied to the repulsive reference system described by a hard sphere equation of state. A cut-off and shifted Lennard-Jones potential divided according to the Weeks–Chandler–Andersen (WCA)-prescription is used as intermolecular interaction force model. The potential parameters were determined by modelling saturated liquid densities of a pure fluid. Computed theoretical density profiles are used to predict X-ray specular reflectivities. Capillary waves models of Braslau etal. (Phys. Rev. A, 1998, 38, 2457), Evans etal. (Mol. Phys., 1981, 42, 1169) and of Meunier (J. Phys. (Paris), 1987, 48, 1819) are adopted to approximate these contributions to both specular reflectivities and surface tension. We propose a parameter free procedure based on the intrinsic interfacial thickness to calculate these terms. The agreement of predicted X-ray reflectivities with experimental data is good in the case where these terms are included. Similarly the surface tension is calculated from the intrinsic part plus contributions due to capillary wave roughening. All the calculations are based exclusively on potential parameters determined from saturated liquid densities.


References

  1. H. T. Davis, Statistical mechanics of phases, interfaces, and thin films, VCH Publishers, Inc., New York, 1996 Search PubMed.
  2. R. Evans, Adv. Phys., 1979, 28, 143 CAS.
  3. R. Evans, in Fundamentals of Inhomogeneous Fluids, ed. D. Henderson, Marcel Dekker, New York, 1992 Search PubMed.
  4. R. Evans, in Liquids at Interfaces, ed. J. Charvolin, J. F. Joanny and J. Zinn-Justin, North-Holland, Amsterdam, 1990 Search PubMed.
  5. P. Tarazona, and R. Evans, 1984, 52, 847.
  6. P. Tarzaona, U. Marini Bettolo Marconi and R. Evans, Mol. Phys., 1987, 60, 573.
  7. B. Q. Lu, R. Evans and M. M. Telo da Gama, Mol. Phys., 1985, 55, 1319 CAS.
  8. D. E. Sullivan, Phys. Rev. B, 1979, 20, 3391 CrossRef; J. Chem. Phys., 1981, 74, 2604 Search PubMed.
  9. J. Fischer and M. Methfessel, Phys. Rev. A, 1980, 22, 2836 CrossRef CAS.
  10. J. Fischer and U. Heinbuch, J. Chem. Phys., 1987, 88, 1909 CrossRef CAS.
  11. M. Wendland, S. Salzmann, U. Heinbuch and J. Fischer, Mol. Phys., 1989, 67, 161 CAS.
  12. M. Wendland, U. Heinbuch and J. Fischer, Fluid Phase Equilib., 1989, 48, 259 CrossRef CAS.
  13. S. Sokolowski and J. Fischer, Mol. Phys., 1990, 70, 1097 CAS.
  14. B. K. Peterson, K. E. Gubbins, G. S. Heffelfinger, U. Marini Bettolo Marconi and F. van Swol, J. Chem. Phys., 1988, 88, 6487 CrossRef CAS.
  15. B. K. Peterson and K. E. Gubbins, Mol. Phys., 1987, 62, 215 CAS.
  16. P. Tarazona, Phys. Rev. A., 1985, 31, 2672 CrossRef CAS.
  17. Light Scattering by Liquid Surfaces and complementary Techniques, ed. D. Langevin, Marcel Dekker, New York, 1992 Search PubMed.
  18. J. Als-Nielsen and G. Materlik, Phys. Today, 1995, 12, 34 Search PubMed.
  19. S. A. Rice, Nature, 1985, 316, 11 CrossRef.
  20. D. K. Schwartz, A. Braslau, B. Ocko, P. S. Pershan, J. Als-Nielsen and J. S. Huang, Phys. Rev. A, 1988, 38(11), 5817 CrossRef CAS.
  21. P. S. Pershan, Physica A, 1991, 172, 17 CrossRef CAS.
  22. P. S. Pershan, J. Phys.: Condens. Matter, 1994, 6, A37 CrossRef CAS.
  23. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko and J. Als-Nielsen, Phys. Rev. A, 1988, 38(5), 2457 CrossRef.
  24. B. M. Ocko, X. Z. Wu, E. B. Sirota, S. K. Sinha and M. Deutsch, Phys. Rev. Lett., 1994, 72(2), 242 CrossRef.
  25. M. K. Sanyal, S. K. Sinha, K. G. Huang and B. M. Ocko, Phys. Rev. Lett., 1991, 66(5), 628 CrossRef CAS.
  26. P. S. Pershan, Physica A, 1993, 200, 50 CrossRef CAS.
  27. I. M. Tidswell, T. A. Rabedeau, P. S. Pershan and S. D. Kosowsky, Phys. Rev. Lett., 1991, 66(16), 2108 CrossRef CAS.
  28. A. Braslau, M. Deutsch, P. S. Pershan, A. H. Weiss, J. Als-Nielsen and J. Bohr, Phys. Rev. Lett., 1985, 54(2), 114 CrossRef CAS.
  29. J. S. Pedersen, J. Appl. Crystallogr., 1992, 25, 129 CrossRef.
  30. J. S. Pedersen and I. W. Hamley, J. Appl. Crystallogr., 1994, 27, 36 CrossRef CAS.
  31. J. S. Pedersen and I. W. Hamley, Physica B, 1994, 198, 16 CrossRef.
  32. P. S. Pershan, Phys. Rev. E, 1994, 50(3), 2369 CrossRef CAS.
  33. J. Winkelmann, B. Brodrecht and I. Kreft, Ber. Bunsen-Ges. Phys. Chem., 1994, 98, 912 CAS.
  34. J. Winkelmann, Ber. Bunsen-Ges. Phys. Chem., 1994, 98, 1308 CAS.
  35. T. Wadewitz and J. Winkelmann, Ber. Bunsen-Ges. Phys. Chem., 1996, 100, 1825 CAS.
  36. M. Mecke, J. Winkelmann and J. Fischer, J. Chem. Phys., 1997, 107, 9264 CrossRef CAS.
  37. M. Mecke, J. Winkelmann and J. Fischer, J. Chem. Phys., 1999, 110, 1188 CrossRef CAS.
  38. L. Verlet and J. Weiss, J. Phys. Rev. A, 1972, 5, 939 Search PubMed.
  39. R. Evans, personal communication, 1987.
  40. R. Evans, U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1763 RSC.
  41. M. M. Telo de Gama and R. Evans, Mol. Phys., 1979, 38, 367.
  42. G. A. Chapela, G. Saville, S. M. Thompson and J. S. Rowlinson, J. Chem. Soc., Faraday Trans. 2, 1986, 82, 1763 RSC.
  43. C. D. Holcomb, P. Clancy and J. A. Zollweg, Mol. Phys., 1993, 78, 437 CAS.
  44. J. Lekner, Physica B, 1991, 173, 99 CrossRef.
  45. J. Als-Nielsen and K. Kjaer, in Phase Transitions in Soft Condensed Matter, Plenum Press, New York, 1989, pp. 113–138 Search PubMed.
  46. R. Evans, Mol. Phys., 1981, 42, 1169 CAS.
  47. R. Evans, J. R. Henderson, D. C. Hoyle, A. O. Parry and Z. A. Sabeur, Mol. Phys., 1993, 80, 775.
  48. M. S. Wertheim, J. Chem. Phys., 1976, 65, 2377 CrossRef CAS.
  49. J. S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon Press, Oxford, 1989 Search PubMed.
  50. S. Dietrich, J. Phys.: Condens. Matter, 1996, 8, 9127 CrossRef CAS.
  51. J. D. Weeks, J. Chem. Phys., 1977, 67, 3106 CrossRef CAS.
  52. J. V. Sengers and J. M. J. van Leeuwen, Phys. Rev. A, 1989, 39, No. 12, 6346 CrossRef.
  53. D. Bonn and G. H. Wegdam, J, Phys. I (Paris), 1992, 2, 1755 Search PubMed.
  54. J. Meunier, J. Phys., 1987, 48, 1819 Search PubMed.
  55. T. Wadewitz and J. Winkelmann, J. Chem. Phys., 1999, submitted Search PubMed.
  56. J. R. Henderson, Phys. Rev. E, 1994, 50, 4836 CrossRef CAS.
  57. C. L. Yaws, Thermodynamic and Physical Property Data, Gulf Publishing Company, Houston, 1992 Search PubMed.
  58. M. J. Terry, J. Chem. Thermodyn., 1996, 1, 413 CrossRef CAS.
  59. V. B. Ostromoukov and M. G. Ostronov, Zh. Foz. Khim., 1994, 68, 39 Search PubMed.
  60. R. Muijlwijk, Physica, 1966, 32, 900 Search PubMed.
  61. W. Wagner, Cryogenics, 1973, 13, 470 CAS.
  62. F. B. Sprow and J. M. Prausnitz, Trans. Faraday Soc., 1966, 62, 1097 RSC.
  63. C. D. Holcomb and J. A. Zollweg, Fluid Phase Equilib, 1992, 75, 213 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.