Kinetics of excited-state Cr(a5S2, a5DJ, a5GJ) depletion by simple hydrocarbons

(Note: The full text of this document is currently only available in the PDF Version )

Kenji Honma


Abstract

The depletion kinetics of excited states of Cr(a5S2, a5DJ, a5GJ) upon interaction with simple hydrocarbons (CH4, C2H6, C3H8, cyclopropane, C2H2, C2H4, and propene) are studied in a discharged flow reactor at He pressures of 0.7 Torr. On interaction with alkanes, Cr(a5S2, a5DJ) show no depletion but an increase in their populations. The higher excited state, Cr(a5GJ), shows depletion upon interaction with alkanes. Good correlation was observed between the depletion rate constants for Cr(GJ) and the formation rate constants for Cr(a5S2, a5DJ), and it is suggested that collisional relaxation from Cr(a5GJ) to Cr(a5S2, a5DJ) is important for the interaction with alkanes. On the other hand, all excited states show depletion upon the interaction with unsaturated hydrocarbons. Among the three states, Cr(a5GJ) shows the most efficient depletion. Rate constants were almost the same as the gas kinetics ones, which suggest no or very small energy barriers for the interaction of this state with alkenes and acetylene. More efficient depletion of Cr(a5GJ) by alkenes and acetylene compared with alkanes is consistent with the presence of stable π-complexes on interaction potential surfaces of the former systems.


References

  1. W. E. Klotzbucher, S. A. Mitchell and G. A. Ozin, Inorg. Chem., 1977, 12, 3063 CrossRef; S. F. Parker, C. H. Peden, P. H. Barrett and R. G. Pearson, Inorg. Chem., 1983, 22, 2813 CrossRef CAS; Z. H. Kafafi, R. H. Hauge and J. L. Margrave, J. Am. Chem. Soc., 1985, 107, 7550 CrossRef CAS; A. J. L. Hanlan, G. A. Ozin and W. J. Power, Inog. Chem., 1978, 17, 3648 Search PubMed; P. H. Kasai, D. McLeod and T. Watanabe, J. Am. Chem. Soc., 1980, 102, 179 CrossRef CAS.
  2. C. E. Brown, S. A. Mitchell and P. A. Hackett, Chem. Phys. Lett., 1992, 191, 175 CrossRef CAS.
  3. S. A. Mitchell and P. A. Hackett, J. Chem. Phys., 1990, 93, 7822 CrossRef CAS.
  4. M. A. Blitz, S. A. Mitchell and P. A. Hackett, J. Phys. Chem., 1991, 95, 8719 CrossRef CAS.
  5. J. M. Parnis, S. A. Mitchell and P. A. Hackett, J. Phys. Chem., 1990, 94, 8152 CrossRef CAS.
  6. S. A. Mitchell, M. A. Blitz and R. Fournier, Can. J. Chem., 1994, 72, 587 CAS.
  7. D. Ritter, J. J. Carroll and J. C. Weisshaar, J. Phys. Chem., 1992, 96, 10636 CrossRef CAS.
  8. K. Senba, R. Matsui and K. Honma, J. Phys. Chem., 1995, 99, 13992 CrossRef CAS.
  9. M. J. S. Dewar, Bull. Soc. Chim. Fr., 1951, 18, C71; J. Chatt and L. A. Duncanson, J. Chem. Soc., 1953, 2939 RSC.
  10. Y. Wen, A. Yethiraj and J. C. Weisshaar, J. Chem. Phys., 1997, 106, 5509 CrossRef CAS.
  11. Upper limits for second-order rate constants are 3 × 10–15 and 2 × 10–14 cm3 s–1 for CH4(0–50 Torr) and C2H4(0–20 Torr), respectively, in ref. 5.
  12. A. M. Christina Wittborn, M. Costas, M. R. A. Blomberg and P. E. M. Siegbahn, J. Chem. Phys., 1997, 107, 4318 CrossRef CAS.
  13. M. R. A. Blomberg, P. E. M. Siegbahn and M. Svensso, J. Am. Chem. Soc., 1992, 114, 6095 CrossRef CAS.
  14. P. E. M. Siegbahn and M. R. A. Blomberg, J. Am. Chem. Soc., 1992, 114, 10548 CrossRef CAS.
  15. M. R. A. Blomberg, P. E. M. Siegbahn and M. Svensson, J. Phys. Chem., 1992, 96, 9794 CrossRef CAS.
  16. J. J. Carroll, K. L. Haug, J. C. Weisshaar, M. R. A. Blomberg, P. E. M. Siegbahn and M. Svensson, J. Phys. Chem., 1995, 99, 13955 CrossRef CAS.
  17. P. E. M. Sigbahn, M. R. A. Blomberg and M. Svensson, J. Am. Chem. Soc., 1993, 115, 1952 CrossRef.
  18. P. E. M. Siegbahn, Theor. Chim. Acta, 1994, 87, 277 CAS.
  19. D. E. Clemmer, K. Honma and I. Koyano, J. Phys. Chem., 1993, 97, 11480 CrossRef CAS.
  20. The hard-sphere rate constant is calculated by kHS=π/4(dCr+dox)2v〉. The diameters of hydrocarbons are taken from J. O. Hirschifelder, C. F. Curtis and R. B. Bird, in Molecular Theory of Gases and Liquids, Wiley, New York, 1954 Search PubMed; and R. C. Reid, J. M. Prausnitz and B. E. Poling, in The Properties of Gases and Liquids, McGraw-Hill, New York, 1987. The diameter of Cr is taken to be 3.70 Å All Cr states are assumed to have the same diameter. The mean relative velocity, (8kBTµ)1/2, was used for 〈v〉, where kBT, and µ are the Boltzmann's constant, temperature, and reduced mass, respectively Search PubMed.
  21. J. R. Fuhr, G. A. Martin and W. L. Wiese, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 3.
  22. One typical example was seen in the depletion of Ti(a 5F) upon the interacton with N2O, where the rise-decay feature was observed, ref. 19. This rise-decay feature comes from a fast formation and a slow depletion of the state measured. It can be changed to a double-exponential feature when the formation of the state is slower than the depletion of that.
  23. C. L. Hanes and K. Honma, J. Chem. Soc. Faraday Trans., 1998, 94, 1171 RSC.
  24. K. Honma, J. Phys. Chem., 1999, A103, 1809 Search PubMed.
  25. The smallest and largest spacings between two adjacent levels are 0.25 and 2.77 cm–1 for Cr(a 5GJ), respectively. They are much smaller than 63.2 cm–1 for the smallest spacing between two adjacent levels for V(a 4D1).
  26. R. Matsui, K. Senba and K. Honma, Chem. Phys. Lett., 1996, 250, 560 CrossRef CAS.
  27. K. Honma and D. E. Clemmer, Laser Chem., 1995, 15, 209 Search PubMed.
  28. M. L. Campbell, R. E. McClean and J. S. S. Harter, Chem. Phys. Lett., 1995, 235, 497 CrossRef CAS.
  29. J. I. Steinfeld, J. S. Francisco and W. L. Hase, in Chemical Kinetics and Dynamics, Prentice-Hall, Inc., 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.