The Cd22+ in molten metal halides and at electrode interfaces

(Note: The full text of this document is currently only available in the PDF Version )

B Børresen, G A. Voyiatzis and G N. Papatheodorou


Abstract

The structural properties of the cadmium species formed by dissolution of cadmium metal in molten cadmium halides (CdX2: X=Cl, Br, I) and in molten mixtures of cadmium chloride with alkali chlorides have been investigated by Raman spectroscopy. The data indicate that in these ionic solvents the predominant species present is the solvated Cd22+ subvalent cation. With increasing ionic strength of the counter anion the frequency of the diatomic cation shifts from 158 cm-1 for the chloride melt to 183 cm-1 for the iodide melt. Due to the overlap of the electronic absorption edge of the Cd22+ with the laser lines used to excite the spectra the Raman band intensities of the solute species are preresonance enhanced. The dissolution of cadmium metal in the cadmium chloride–alkali chloride mixtures increases with temperature and depends on the stability of the CdCl42- species formed in these melts. The looser the CdCl42- association the higher the solubility and the stability of the Cd22+ species. Raman spectroelectrochemical methods have been applied for studying amorphous carbon electrode surfaces during electrolysis of CdCl2 in LiCl–KCl eutectic. A new Raman band measured at ∽158 cm-1 during electrolysis was attributed to the subvalent Cd22+ species. It seems that these species are formed in the vicinity of the electrode by a homogeneous electrochemical reaction.


References

  1. M. A. Bredig, in Molten Salt Chemistry, ed. M. Blander, Interscience, New York, 1964, p. 367 Search PubMed.
  2. J. D. Corbett, in Fused Salts, ed. N. Sundeim, McGraw-Hill, New York, 1964, p. 341 Search PubMed.
  3. E. A. Ukshe and N. G. Bukun, Russ. Chem. Rev. (Engl. Transl.), 1961, 30, 90 Search PubMed.
  4. G. M. Haarberg, PhD Thesis, Dept. of Electrochemistry, Norwegian University of Science and Technology, Trondheim, Norway, 1985.
  5. G. M. Haarberg and J. Thonstad, J. Appl. Electrochem., 1989, 19, 789 CAS.
  6. B. Børresen, PhD Thesis, Dept. of Electrochemistry, Norwegian University of Science and Technology, Trondheim, Norway, 1995.
  7. A. Otto, Surf. Sci., 1978, 75, L392 CrossRef CAS.
  8. M. Fleischmann, P. Graves, I. Hill, A. Oliver and J. Robinson, J. Electroanal. Chem., 1983, 150, 43 CrossRef and references therein.
  9. M. Odziemkowski, J. Flis and D. E. Irisk, Electrochim. Acta, 1994, 39, 2225 CrossRef CAS.
  10. M. Inaba, H. Yoshida, Z. Ogumi, T. Abe, Y. Mizatani and M. Asano, J. Electrochem. Soc., 1995, 142, 20 CAS.
  11. M. Kovac, S. Milicev, A. Kovac and S. Pejovnik, J. Electrochem. Soc., 1995, 142, 1390 CAS and references therein.
  12. G. N. Papatheodorou, I. V. Boviatsis and G. A. Voyiatzis, J. Appl. Electrochem., 1992, 22, 517 CAS.
  13. M. Bachtler, W. Freyland, G. A. Voyiatzis and G. N. Papatheodorou, Ber. Bunsen-Ges. Phys. Chem., 1995, 99, 21 CAS.
  14. S. Y. Yoon, PhD Thesis, Dept. of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA, 1987.
  15. J. F. Jal, J. Dupury and P. Chieux, J. Phys. C: Solid State Phys., 1985, 83, 76.
  16. J. D. Corbett, W. J. Burhard and L. F. Druding, J. Am. Chem. Soc., 1961, 83, 76 CrossRef CAS.
  17. P. L. Radloff and G. N. Papatheodorou, J. Chem. Phys., 1980, 82, 992 CrossRef CAS.
  18. G. A. Voyiatzis and G. N. Papatheodorou, Inorg. Chem., 1992, 31, 1945 CrossRef CAS.
  19. G. A. Voyiatzis and G. N. Papatheodorou, Proc.-Electrochem. Soc., 1990, 90–17, 161 Search PubMed.
  20. S. Boghosian and G. N. Papatheodorou, J. Phys. Chem., 1989, 93, 415 CrossRef CAS.
  21. V. A. Maroni and H. J. Hathaway, Electrochim. Acta, 1970, 15, 1837 CrossRef CAS.
  22. J. H. R. Clark, P. J. Hartley and Y. Kuroda, J. Phys. Chem., 1972, 76, 1831 CrossRef.
  23. S. V. Volkov, O. N. Babuskina and N. I. Buryak, Russ. J. Inorg. Chem., 1990, 35, 1637.
  24. G. J. Janz, NIST Standard database 27, NIST Properties of Molten Salts, Version 2.0, National Institute of Standards and Technology, Gaithersburg, MD 20899, 1992 Search PubMed.
  25. D. Cubicciotty, J. Am. Chem. Soc., 1952, 74, 1198 CrossRef.
  26. K. Grjotheim, F. Gronvold and J. Krogh-Moe, J. Am. Chem. Soc., 1955, 77, 5824 CrossRef CAS.
  27. M. Tanaka, K. Balasubramanyan and O. J. Bockris, Electrochim. Acta, 1963, 8, 621 CrossRef CAS.
  28. L. Suski and P. Tomczyk, J. Chem. Thermodynamics, 1981, 13, 803 Search PubMed.
  29. G. N. Papatheodorou and O. J. Kleppa, Inorg. Chem., 1971, 10, 872 CrossRef.
  30. C. Dracopoulos, B. Gilbert, B. Børresen, G. M. Photiadis and G. N. Papatheodorou, J. Chem. Soc., Faraday Trans., 1997, 93, 3081 RSC and references therein.
  31. G. N. Papatheodorou, Structure and Thermodynamics of Molten Salts, in Comprehensive Treatise of Electrochemistry, ed. B. E. Conway, J. O'M. Bockris and E. Yeager, Plenum Press, NY, 1983, vol. 5 Search PubMed.
  32. W. E. Haupin and W. C. McGrew, Aluminium, 1975, 51, 273 Search PubMed.
  33. Q. Zhuxian, F. Liman, K. Grjotheim and H. K. Kvande, J. Appl. Electrochem., 1987, 17, 707.
  34. G. M. Haarberg, R. S. Johansen, J. Melaas and R. Tunold, Proc.-Electrochem. Soc., 1990, 90–17, 449 Search PubMed.
  35. S. Rolseth, PhD Thesis, Dept. of Electrochemistry, Norwegian University of Science and Technology, Trondheim, Norway, 1980.
Click here to see how this site uses Cookies. View our privacy policy here.