Phase behaviour of ternary mixtures: a theoretical investigation of the critical properties of mixtures with equal size components

(Note: The full text of this document is currently only available in the PDF Version )

Ya Song Wei and Richard J. Sadus


Abstract

Conformal solution theory in conjunction with the one-fluid model and the Guggenheim equation of state are used to calculate the critical properties of binary and ternary mixtures characterised by molecules of identical size (identical h conformal parameters) but different energy parameters (different f conformal parameters). When the geometric mean combining rule is used to obtain contributions from unlike interactions, binary mixtures of equal size components generate Type I, II and III phase behaviour. The critical properties of ternary mixtures composed of binary subsystems of different phase behaviour types are examined. Results are presented at different temperatures and pressures covering both vapour–liquid and liquid–liquid equilibria. The results illustrate the diversity of phenomena exhibited by ternary mixtures and the relationship of the behaviour exhibited to the relative strength of dissimilar interactions between different pairs of molecules. A progressive transition between vapour–liquid and liquid–liquid equilibria and higher order critical phenomena are likely to be common features of the phase behaviour of ternary mixtures.


References

  1. R. J. Sadus, High Pressure Phase Behaviour of Multicomponent Fluid Mixtures, Elsevier, Amsterdam, 1992 Search PubMed.
  2. P. H. van Konynenburg and R. L. Scott, Philos. Trans. R. Soc. London A, 1980, 298, 495 Search PubMed.
  3. V. A. Mazur, L. Z. Boshkov and V. G. Murakhovsky, Phys. Lett., 1984, 104, 415 Search PubMed.
  4. I. Nezbeda, J. Kolafa and W. R. Smith, J. Chem. Soc., Faraday Trans., 1997, 93, 3073 RSC.
  5. L. V. Yelash and T. Kraska, Ber. Bunsenges. Phys. Chem., 1998, 102, 213 CAS.
  6. S. I. Sandler, H. Orbey and B.-I. Lee, in Models For Thermodynamic and Phase Equilibria Calculations, ed. S. I. Sandler, Marcel Dekker, New York, 1994 Search PubMed.
  7. A. van Pelt, C. J. Peters and J. de Swaan Arons, J. Chem. Phys., 1991, 95, 7569 CrossRef CAS.
  8. C. J. Peters and K. Gauter, Chem. Rev., 1999, 99, 419 CrossRef CAS.
  9. R. J. Sadus, J. Phys. Chem., 1992, 96, 5197 CrossRef CAS.
  10. R. J. Sadus, Fluid Phase Equilib., 1993, 83, 101 CrossRef CAS.
  11. P. C. Tsang, O. N. Whilte, P. Y. Perigard, L. F. Vega and A. Z. Panagiotopoulos, Fluid Phase Equilib., 1995, 107, 31 CrossRef CAS.
  12. J. Vorholz, V. I. Harismiadis and A. Z. Panagiotopoulos, Fluid Phase Equilib., 1997, 129, 311 CrossRef CAS.
  13. E. de Miguel and M. M. Telo da Gama, J. Chem. Phys., 1997, 107, 6366 CrossRef CAS.
  14. R. J. Sadus, Fluid Phase Equilib., 1999, 157, 169 CrossRef CAS.
  15. R. J. Sadus, Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation, Elsevier, Amsterdam, 1999 Search PubMed.
  16. R. J. Sadus, AIChE J., 1994, 40, 1376 CAS.
  17. C. P. Hicks and C. L. Young, J. Chem. Soc., Faraday Trans. 2, 1977, 73, 597 RSC.
  18. W. B. Brown, Philos. Trans. R. Soc. London A, 1957, 250, 175 Search PubMed.
  19. E. A. Guggenheim, Mol. Phys., 1965, 9, 199 CAS.
  20. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635 CrossRef CAS.
  21. Y. S. Wei and R. J. Sadus, Fluid Phase Equilib., 1996, 122, 1 CrossRef CAS.
  22. Y. S. Wei, R. J. Sadus and E. U. Franck, Fluid Phase Equilib., 1996, 123, 1 CAS.
  23. R. J. Sadus and C. L. Young, Chem. Eng. Sci., 1987, 42, 1717 CrossRef CAS.
  24. R. J. Sadus and C. L. Young, Chem. Eng. Sci., 1988, 43, 883 CrossRef CAS.
  25. Y. S. Wei and R. J. Sadus, Int. J. Thermophys., 1994, 15, 1199 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.