The application of theoretical models of complex shape to the fitting of experimental spectra having closely overlapping bands

(Note: The full text of this document is currently only available in the PDF Version )

Trevor R. Griffiths, Dmitry A. Nerukh and Sergey A. Eremenko


Abstract

The problem of the uniqueness of parameters obtained during fitting of experimental spectra containing closely overlapping bands has been evaluated, since conventional methods of fitting do not produce reliable results. It is here shown that, despite the difficulties inherent in both the formal mathematical problem and its numerical solutions, typical and representative spectra can be resolved unambiguously within a reasonably chosen theoretical model. Reliable values of the parameters of the model, including parameters of band shape, can also be obtained. A random search method of global minimisation of a function with a significant number of arguments is derived. A program and algorithm to implement this method for spectra decomposition have been developed. The program allows the microdynamics of liquids to be obtained directly upon performing numerical Fourier transformations on a model (theoretical) time correlation function together with using model spectra obtained thereby in each fitting step. A model spectrum for any desired accuracy and frequency range can hence be generated without the unavoidable errors inherent in conventional methods. The apparatus function of the spectrophotometer is also now readily incorporated. Using the algorithm, the parameters of the microdynamics of acetonitrile molecules are obtainable for the first time upon decomposition of its ν2 Raman vibration, and a value of 0.069 was obtained for the dimensionless modulation speed in liquid acetonitrile. This method has also enabled for the first time the detection of molecules in the second solvation shell around Li+ in acetonitrile, from within its Raman spectrum.


References

  1. M. Besnard, M. I. Cabaco and J. Yarwood, Chem. Phys. Lett., 1992, 198, 207 CrossRef CAS.
  2. I. Vuchkov, L. Boyadzhieva and E. Solakov, Applied Linear Regression Analysis, Financy i statistika, Moscow, 1987 Search PubMed.
  3. D. S. Konyaev, S. A. Merny and Yu. V. Kholin, New software for studying of equilibrium of complexes formation, XIV Ukrainian Conference on Inorganic Chemistry, 1996 Search PubMed.
  4. O. N. Kalugin, D. A. Nerukh, I. N. Vunnik, E. G. Otlejkina, Yu. N. Surov and N. S. Pivnenko, J. Chem. Soc., Faraday Trans., 1994, 90, 297 RSC.
  5. R. Kubo, J. Phys. Soc. Jpn., 1962, 17, 1100 Search PubMed.
  6. R. J. Le Roy, J. Mol. Spectrosc., 1998, 191, 223 CrossRef.
  7. D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972 Search PubMed.
  8. A. G. Zhilinskas, Global Optimisation: Axiomatics of Statistical Models, Algorithms, Applications, Mokslas, Vilnjus, 1986 Search PubMed.
  9. A. A. Zhiglyavsky, Mathematical Theory of Global Random Search, LGU, Leningrad, 1985 Search PubMed.
  10. A. A. Avdeenko, V. V. Eremenko, N. I. Gorbenko, P. V. Zinoviev, D. A. Nerukh, A. T. Pugachev, N. B. Silaeva, Yu. A. Tiunov and N. P. Churakova, Sverkhtverdye Materialy, 1997, 3, 54 Search PubMed.
  11. O. N. Kalugin, D. A. Nerukh, S. A. Eremenko, A. V. Vankevich and A. G. Nerukh, Zh. Neorg. Khim., 1996, 41, 261 Search PubMed.
  12. D. A. Nerukh, PhD Thesis, Kharkov, 1996.
  13. S. Hashimoto, T. Ohba and S. Ikawa, Chem. Phys., 1989, 138, 63 CrossRef CAS.
  14. A. Sugitani, S. Ikawa and S. Konaka, Chem. Phys., 1990, 142, 423 CrossRef CAS.
  15. K. Tanabe and J. Haraishi, Spectrochim. Acta, 1980, A36, 665 CrossRef.
  16. G. Fini and P. Mirone, Spectrochim. Acta, 1976, A32, 439 CrossRef.
  17. M. I. S. Sastry and S. Singh, J. Raman Spectrosc., 1984, 15, 80 CAS.
  18. M. I. S. Sastry and S. Singh, Can. J. Chem., 1985, 63, 1351 CAS.
  19. I. M. Strauss and M. C. R. Symons, J. Chem. Soc., Faraday Trans., 1978, 74, 2146 RSC.
  20. R. Kubo, in Fluctuations, Relaxation, and Resonance in Magnetic Systems, ed. D. Ter Haar, Plenum, New York, 1962, p. 27 Search PubMed.
  21. M. Maroncelli, J. Chem. Phys., 1991, 94, 2084 CrossRef CAS.
  22. W. G. Rothschild, J. Chem. Phys., 1976, 65, 455 CrossRef CAS.
  23. I. S. Perelygin, A. S. Krauze and I. G. Itkulov, Chem. Phys., 1993, 12, 404 CAS.
  24. S. A. Eremenko, O. N. Kalugin and D. A. Nerukh, Proc. Kharkov. Univ., Chem., 1997, 1, 34 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.