Strongly subspectral pairs in C50+10n and C60+12n fullerenes via a common generic graph

(Note: The full text of this document is currently only available in the PDF Version )

Kakali Datta, Manas Banerje and Asok K. Mukherjee


Abstract

A convenient scheme has been developed for drawing the Schlegel digrams (graphs) of C50+10n and C60+12n (n=integer) fullerenes maintaining five-fold and six-fold rotational symmetry, respectively. It has been found that after symmetry-factorisation, 10+2n eigenvalues common to C50+10n and C60+12n fullerenes can be obtained from a generic graph and for this reason (C60, C72), (C70, C84), (C80, C96) ... , corresponding to n=1, 2, 3, ... respectively, are strongly subspectral pairs having 12, 14, 16, ... common eigenvalues respectively. Of the 10+2n common eigenvalues, n+3 can be expressed in the analytic form: λj= -1+2 cos[jπ/(n+4)], j=1, 2, ... n+3. The other n+7 common eigenvalues can be obtained from a weighted linear chain whose characteristic polynomial can be easily derived by means of a recently developed scheme; a sample calculation for n=1 has been shown. Results for a number of subspectral pairs have been tabulated.


References

  1. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature, 1985, 318, 162 CrossRef CAS.
  2. B. I. Dunlop and R. J. Taylor, Phys. Chem., 1994, 98, 11018 Search PubMed.
  3. R. Taylor, J. P. Hare, A. K. Abdul-Sada and H. W. Kroto, J. Chem. Soc., Chem. Commun., 1990, 1423 RSC.
  4. R. Taylor., J. P. Hare, A. K. Abdul-Sada and H. W. Kroto, J. Chem. Soc., Chem. Commun., 1990, 1423 RSC.
  5. R. Taylor and D. R. M. Walton, Nature, 1993, 363, 685 CrossRef CAS.
  6. R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1994, 2497 RSC.
  7. R. Taylor, G. J. Langley, A. K. Brisdon, J. H. Holloway, E. G. Hope, H. W. Kroto and D. R. M. Walton, J. Chem. Soc., Perkin Trans. 2, 1995, 181 RSC.
  8. D. J. Klein, W. A. Seitz and T. G. Schmatz, Nature, 1986, 323, 703 CAS.
  9. P. W. Fowler., Chem. Phys. Lett., 1986, 131, 444 CrossRef CAS.
  10. P. W. Fowler and J. Woolrich, Chem. Phys. Lett., 1986, 127, 78 CrossRef CAS.
  11. P. W. Fowler and J. I. Steer, J. Chem. Soc., Chem. Commun., 1987, 1403 RSC.
  12. P. W. Fowler, J. E. Cremona and J. I. Steer, Theor. Chim. Acta., 1998, 73, 1 Search PubMed.
  13. P. W. Fowler, J. Chem. Soc., Faraday Trans., 1990, 86, 2073 RSC.
  14. J. C. Manolopoulos and S. E. Down, Chem. Phys. Lett., 1991, 181, 105 CrossRef CAS.
  15. P. W. Fowler, T. C. Batten and D. E. Manoloupoulos, J. Chem. Soc., Faraday Trans., 1991, 87, 3103 RSC.
  16. Y. Deng and C. N. Yang, Phys. Lett. A, 1992, 170, 176.
  17. R. Friedberg, T. D. Lee and H. C. Ren, Phys. Rev., 1992, B46, 14150 Search PubMed.
  18. Y. L. Lin and F. Nori, Phys. Lett. A, 1993, 183, 214 CrossRef CAS.
  19. J. Liu, Y. H. Shao and Y. S. Jiang, Chem. Phys. Lett., 1993, 210, 149 CrossRef CAS.
  20. T. T. Chow and C. N. Yang, Phys. Lett. A, 1993, 183, 221 CrossRef.
  21. Y. L. Lin and F. Nori, Phys. Rev., 1994, B49, 5020 Search PubMed.
  22. C. G. Liu, M. M. Wang, Y. H. Shao and Y. S. Jiang, Phys. Lett. A, 1994, 196, 120 CrossRef CAS.
  23. A. Ceulemans and P. W. Fowler, J. Chem. Soc., Faraday Trans., 1995, 91, 3089 RSC.
  24. J.-i. Aihara, J. Chem. Soc. Faraday Trans., 1998, 94, 3537 RSC.
  25. D. J. Klein, W. A. Seitz and T. G. Smalz, J. Phys. Chem., 1993, 97, 1231 CrossRef CAS.
  26. E. C. Kirby, R. B. Mallion and P. Pollak, J. Chem. Soc., Faraday Trans., 1993, 89, 1945 RSC.
  27. P. W. Fowler and V. Morvan, J. Chem. Soc., Faraday Trans., 1992, 88, 2631 RSC.
  28. M. Yoshida, M. Fujita, P. W. Fowler and E. C. Kirby, J. Chem. Soc., Faraday Trans., 1997, 93, 1037 RSC.
  29. J. R. Dias, J. Chem. Inf. Comput. Sci., 1994, 34, 248 CrossRef CAS.
  30. W. T. Tutte, Proc. London Math. Soc., 1963, 13, 743.
  31. R. A. Davidson, Theor. Chim. Acta, 1981, 58, 193 CAS.
  32. M. Shen, Int. J. Quantum Chem., 1990, 38, 551 CrossRef.
  33. K. Datta and A. K. Mukherjee, Int. J. Quantum Chem., 1997, 65, 199 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.