Coumarin 153 in the gas phase: optical spectra and quantum chemical calculations

(Note: The full text of this document is currently only available in the PDF Version )

Annette Mühlpfordt, Roland Schanz, Nikolaus P. Ernsting, Vadim Farztdinov and Stefan Grimme


Abstract

We report the absorption spectrum of Coumarin 153 in the gas phase at 383 K and its fluorescence spectra in a supersonic jet. At excess vibrational energy above 200 cm-1 in the first excited state S1, intramolecular vibrational redistribution leads to emission from interconverting conformers. For the hot isolated molecules, the emission spectrum is dominated by active modes of 350, 810, and 1150 cm-1 and the distributions of oscillator strength for absorption and emission cross at 25420±40 cm-1. This value should be used in solvation studies for the electronic S1 energy of the bare molecule. The oscillator distributions change with temperature indicating a dependence of Franck-Condon factors for high-frequency modes on a low-frequency coordinate. Calculations of electronic structure with density-functional theory show that the second excited state is well separated from the first. It is proposed that spectral changes observed during nonequilibrium polar solvation are caused by intramolecular reorganisation of the julolidine group in the S1 state on the 200 fs time scale.


References

  1. G. R. Fleming, T. Joo and M. Cho, Adv. Chem. Phys., 1997, 101, 141 CAS.
  2. M. L. Horng, J. A. Gardecki, A. Papazyan and M. Maroncelli, J. Phys. Chem., 1995, 99, 17311 CrossRef CAS.
  3. C.-P. Hsu, Y. Georgievskii and R. A. Marcus, J. Phys. Chem. A, 1998, 102, 2658 CrossRef CAS.
  4. S. A. Passino, Y. Nagasawa and G. R. Fleming, J. Chem. Phys., 1997, 107, 6094 CrossRef CAS.
  5. J. Ruthmann, S. A. Kovalenko and N. P. Ernsting, J. Chem. Phys., 1998, 109, 1 CrossRef CAS.
  6. P. F. Barbara and W. Jarzeba, Adv. Photochem., 1990, 15, 1 Search PubMed.
  7. S. A. Kovalenko, J. Ruthmann and N. P. Ernsting, Chem. Phys. Lett., 1997, 271, 40 CrossRef CAS.
  8. R. S. Moog, W. W. Davis, S. G. Ostrowski and G. L. Wilson, Chem. Phys. Lett., 1999, 299, 265 CrossRef CAS.
  9. C. R. Moylan, J. Phys. Chem., 1994, 98, 13513 CrossRef CAS.
  10. W. Baumann and Z. Nagy, Pure Appl. Chem., 1993, 65, 1729.
  11. J. E. Lewis and M. Maroncelli, Chem. Phys. Lett., 1998, 282, 197 CrossRef CAS.
  12. G. A. Reynolds and K. H. Drexhage, Opt. commun., 1975, 13, 222 CrossRef CAS.
  13. N. P. Ernsting, M. Asimov and F. P. Schäfer, Chem. Phys. Lett., 1982, 91, 231 CrossRef CAS.
  14. B. A. Pryor, P. M. Andrews, M. P. Palmer, M. R. Berger and M. R. Topp, J. Phys. Chem., 1998, 102, 3284 Search PubMed.
  15. B. A. Pryor, P. M. Palmer, Y. Chen and M. R. Topp, Chem. Phys. Lett., 1999, 299, 536 CrossRef CAS.
  16. Y. J. Yan and S. Mukamel, Phys. Rev. A, 1990, 41, 6485 CrossRef CAS.
  17. R. F. Loring, Y. J. Yan and S. Mukamel, J. Chem. Phys., 1987, 87, 5840 CrossRef CAS.
  18. M. Berg, J. Phys. Chem. A, 1998, 102, 17 CrossRef CAS.
  19. D. V. Matyushov, Chem. Phys., 1996, 211, 47 CrossRef CAS.
  20. S. A. Kovalenko, J. Ruthmann and N. P. Ernsting, J. Chem. Phys., 1998, 109, 1894 CrossRef CAS.
  21. P. K. McCarthy and G. J. Blanchard, J. Phys. Chem., 1993, 97, 12205 CrossRef CAS.
  22. K. Rechthaler and G. Köhler, Chem. Phys., 1994, 189, 99 CAS.
  23. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  24. Y. Jiang, P. K. McCarthy and G. J. Blanchard, Chem. Phys., 1994, 183, 249 CrossRef CAS.
  25. S. Grimme, Chem. Phys. Lett., 1996, 259, 128 CrossRef CAS.
  26. S. Grimme and M. Waletzke, to be published.
  27. J. U. White, J. Opt. Soc. Am., 1942, 32, 285 Search PubMed.
  28. J. Altmann, R. Baumgart and C. Weitkamp, Appl. Opt., 1981, 20, 995 CAS.
  29. C. V. Shank, A. Dienes, A. M. Trozzolo and J. A. Myer, Appl. Phys. Lett., 1970, 16, 405 CAS.
  30. The spectrograph used was in fact designed as a monochromator, which in its present configuration (high-resolution grating and a CCD detector) implies a trapezoidal attenuation of the transmission efficiency as function of wavelength. Rather than correcting this technical deficiency directly, we obtained an intensity correction function for each partial spectrum with the help of the corresponding low-resolution spectrum as follows. The recorded partial spectrum was convoluted with a Gaussian broadening function to make it comparable to the low-resolution spectrum. Comparison then gave a smooth spectral correction function. This was used to scale the ordinate values of the original highresolution spectrum. Finally, the resulting partial spectra were joined with appropriate switching functions to yield the oscillator distribution for emission.
  31. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209 CrossRef CAS.
  32. J. J. P. Stewart, J. Comput. Chem., 1989, 10, 221 CrossRef CAS.
  33. J. J. P. Stewart, J. Comput. Chem., 1991, 12, 320 CrossRef CAS.
  34. R. Aldrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165 CrossRef CAS.
  35. O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346 CrossRef CAS.
  36. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571 CrossRef.
  37. A. D. Becke, J. Chem. Phys., 1993, 98, 1372 CrossRef CAS.
  38. A. D. Becke, J. Chem. Phys., 1993, 98, 5648 CrossRef CAS.
  39. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623 CrossRef CAS.
  40. F. Weigend and M. Häser, Theor. Chem. Acc., 1997, 97, 331 CrossRef CAS.
  41. F. Weigend and R. Ahlrichs, RI-MP2 optimized auxiliary basis sets available via anonymous ftp://ftp.chemie.uni-karlsruhe.de/pub/cbasen Search PubMed.
  42. A. B. J. Parusel, G. Köhler and S. Grimme, J. Phys. Chem. A, 1998, 102, 6297 CrossRef CAS.
  43. D. B. Siano and D. E. Metzler, J. Chem. Phys., 1969, 51, 1856 CrossRef CAS.
  44. For the gas phase absorbance (ν0, Δ, b, g0)=(24 940, 578, –0.770, 0.012), (25 861, 1277, +0.343, 0.152), (27 279, 1718, +0.027, 0.205), (28 786, 1777, +0.386, 0.079), (29 055, 4001, +0.686, +0.057). For the normalized fluorescence quantum distribution (ν0, Δ b, g0)=(25 131, 979, 0.141, 1049), (23 990, 1503, –0.330, 1509), (22 690, 1134, –0.041, 521), (21 423, 2456, –0.743, 398).
  45. Y. B. Band and D. F. Heller, Phys. Rev. A, 1988, 38, 1885 CrossRef CAS.
  46. E. G. McRae, J. Phys. Chem., 1957, 61, 562 CrossRef CAS.
  47. E. Lippert, Z. Naturforsch., 1955, 10a, 541 Search PubMed.
  48. Y. Ooshika, J. Phys. Soc. Jpn., 1954, 9, 594 Search PubMed.
  49. N. S. Bayliss and E. G. McRae, J. Phys. Chem., 1954, 58, 1002 CrossRef CAS.
  50. This is borne out by convolution of the normalized spectra in Figs. 3 and 4 corresponding to conformer II and I, respectively, with a 1 nm broadening function.
  51. J. Choo, T.-S. Kim and Y. S. Choi, Bull. Korean Chem. Soc., 1996, 17, 461 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.