Photoinduced electron transfer from excited [tris(2,2′-bipyridine)ruthenium(II)]2+ to a series of anthraquinones with small positive or negative Gibbs energy of reaction. Marcus behavior and negative activation enthalpies

(Note: The full text of this document is currently only available in the PDF Version )

Rudolf Frank, Gerhard Greiner and Hermann Rau


Abstract

In the electron transfer (ET) quenching reactions of electronically excited *Ru(bpy)32+ in acetonitrile an increase of the rate constant kq is observed in the series of 2-methyl-, 1-chloro-, and 1-nitro-anthraquinone as quenchers. If alkali salts are used as supporting electrolytes the AQ- radical anions are found to form specific associates with the alkali cations. In the presence of non-associating tetraalkylammonium salts the system follows the predictions of Marcus theory. Numerical methods are developed which allow the determination of the rate constants of the conventional reaction scheme. This analysis shows that the quantum yield of free AQ- radical anion formation is governed by the interplay of forward, reverse and back ET. Negative activation enthalpies are found for the activation controlled quenching reactions. From the numerical analysis of the system of rate constants it is inferred that this phenomenon is due to the elementary ET step in the reaction sequence. We discuss the pre-equilibrium and elementary reaction models for reactions with negative activation enthalpy and present, to our knowledge, the first example of successful discrimination between them.


References

  1. (a) D. Rehm and A. Weller, Ber. Bunsen-Ges. Phys. Chem., 1969, 73, 834 Search PubMed; (b) D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259 CAS.
  2. (a) R. A. Marcus, J. Chem. Phys., 1956, 24, 966 CrossRef CAS; (b) R. A. Marcus, Annu. Rev. Phys. Chem., 1964, 15, 155 CrossRef CAS; (c) R. A. Marcus, Angew. Chem., 1993, 105, 1161 CAS.
  3. (a) L. J. Calcaterra, G. L. Closs and J. R. Miller, J. Am. Chem. Soc., 1983, 105, 670 CrossRef CAS; (b) G. L. Closs, L. T. Calcaterra, N. J. Green, K. W. Penfield and J. R. Miller, J. Phys. Chem., 1986, 90, 3673 CrossRef CAS; (c) I. R. Gould, D. Ege, J. E. Moser and S. Farid, J. Am. Chem. Soc., 1990, 112, 4290 CrossRef CAS.
  4. (a) I. R. Gould, R. H. Young, L. J. Mueller and S. Farid, J. Am. Chem. Soc., 1994, 116, 8176 CrossRef CAS; (b) I. R. Gould, R. H. Young, L. J. Mueller, A. C. Albrecht and S. Farid, J. Am. Chem. Soc., 1994, 116, 8188 CrossRef CAS; (c) I. R. Gould and S. Farid, Acc. Chem. Res., 1996, 29, 522 CrossRef CAS; (d) M. G. Kuzmin, Pure Appl. Chem., 1993, 65, 1653 CrossRef CAS; (e) M. G. Kuzmin, J. Photochem. Photobiol. A: Chem., 1996, 102, 51 CrossRef CAS; (f) N. A. Sadovskii, M. G. Kuzmin, H. Görner and K. Schaffner, Chem. Phys. Lett., 1998, 282, 456 CrossRef CAS.
  5. M. Z. Hoffmann, F. Bolletta, L. Moggiand and G. L. Hug, J. Phys. Chem., Ref. Data, 1989, 18, 219.
  6. (a) D. Plancherel, J. G. Vos and A. von Zelewski, J. Photochem., 1987, 36, 267 CrossRef CAS; (b) J. R. Darwent and K. Kalyanasundaram, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 373 RSC; (c) A. Vlcek jr. and F. Bolletta, Inorg. Chem. Acta, 1983, 76, L227 CrossRef CAS.
  7. (a) N. Kitamura, S. Okano and S. Tazuke, Chem. Phys. Lett., 1982, 90, 13 CrossRef CAS; (b) N. Kitamura, R. Obata, H.-B. Kim and S. Tazuke, J. Phys. Chem., 1987, 91, 2033 CrossRef CAS; (c) N. Kitamura, H.-B. Kim, S. Okano and S. Tazuke, J. Phys. Chem., 1989, 93, 5750 CrossRef CAS; (d) H.-B. Kim, N. Kitamura, Y. Kawanishi and S. Tazuke, J. Phys. Chem., 1989, 93, 5757 CrossRef CAS; (e) N. Kitamura, R. Obata, H.-B. Kim and S. Tazuke, J. Phys. Chem., 1989, 93, 5764 CrossRef CAS.
  8. R. Frank and H. Rau, Recl. Trav. Chim. Pays.-Bas, 1995, 114, 556.
  9. E. I. Kapinus and H. Rau, J. Phys. Chem., 1998, 102, 5569 Search PubMed.
  10. (a) T. Ohno, A. Yoshimura and N. Mataga, J. Phys. Chem., 1990, 94, 4871 CrossRef CAS; (b) T. Kakitani, N. Matsuda, A. Yoshimori and N. Mataga, Prog. React. Kinet., 1995, 20, 347 Search PubMed; (c) N. Mataga, T. Ashai, Y. Kanda, T. Okada and T. Kakitani, Chem. Phys., 1988, 127, 249 CrossRef CAS.
  11. J. R. Bolton, M. D. Archer, in Electron tranfer in inorganic, organic and biological systems, Adv. Chem. Ser., ed. J. R. Bolton, N. M. Mataga and P. G. McLendon, ACS, Washington, DC, 1991, vol. 228, p. 7 Search PubMed.
  12. (a) M. V. Smoluchowski, Z. Physik. Chem. (Leipzig), 1918, 92, 129 Search PubMed; (b) P. Debye, Trans. Electrochem. Soc., 1942, 82, 265 Search PubMed; (c) M. Eigen, Z. Physik. Chem., (Wiesbaden), 1954, 1, 176 Search PubMed.
  13. C. Chiorboli, M. T. Indelli, M. A. Rampi-Scandola and F. Scandola, J. Phys. Chem., 1988, 92, 156 CrossRef CAS.
  14. Estimated to be equal to that of methylviologen.15a.
  15. (a) C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan and J. K. Nagle, J. Am. Chem. Soc., 1979, 101, 4815 CrossRef CAS; (b) W. E. Jones and M. A. Fox, J. Phys. Chem., 1994, 98, 5095 CrossRef.
  16. As the quenching process is a bimolecular reaction this quantum yield is not a characteristic property of the quencher or donor but it is a function of the reaction conditions, especially of the quencher concentration. With increasing quencher concentration it approaches an upper limit. The quencher concentration in this work is so high that this limit is reached.
  17. R. Frank and H. Rau, EPA Newsletter, 1999, 65, 39 Search PubMed.
  18. (a) A. E. Brodsky, L. L. Gordienko and L. S. Degtiarev, Electrochim. Acta, 1968, 13, 1095 CrossRef; (b) M. E. Peover, J. Chem. Soc., 1962, 4540 RSC; (c) A. Aumüller and S. Hünig, Liebigs Ann. Chem., 1986, 165 Search PubMed; (d) H. Shalev and D. H. Evans, J. Am. Chem. Soc., 1989, 111, 2667 CrossRef CAS; (e) R. G. Compton, B. A. Coles, M. B. G. Pilkington and D. Bethell, J. Chem. Soc., Faraday Trans., 1990, 86, 663 RSC; (f) K. Umemoto, Chem. Lett., 1985, 1415 CAS; (g) J. Posdorfer, M. Olbrich-Stock and R. N. Schindler, Z. Phys. Chem., N. F. München, 1991, 171, 33 Search PubMed.
  19. (a) I. Piljac, M. Tkalcec and B. Grabaric, Anal. Chem., 1975, 47, 1369 CrossRef CAS; (b) V. D. Bezuglyi, L. V. Shkodina and T. A. Alekseeva, Soviet Electrochemistry, 1984, 19, 1282 Search PubMed; (c) M. E. Peover and J. D. Davies, J. Electroanal. Chem., 1963, 6, 46 CrossRef CAS; (d) R. L. Blankespoor, D. L. Schutt, M. B. Tubergen and R. L. DeJong, J. Org. Chem., 1987, 52, 2059 CrossRef CAS; (e) S. Lazarov, A. Trifonov and J. Panajotov, Z. Phys. Chem., 1965, 233, 49.
  20. C. Chiorboli, F. Scandola and H. Kisch, J. Phys. Chem., 1986, 90, 2211 CrossRef CAS.
  21. Reaction spectra are available as supplementary material.
  22. (a) R. M. Wightman, J. R. Cockrell, R. W. Murray, J. N. Burnett and S. B. Jones, J. Am. Chem. Soc., 1976, 90, 2526; (b) J. L. Roberts jr., H. Sugimoto, W. C. Barrette jr. and D. T. Sawyer, J. Am. Chem. Soc., 1985, 107, 4556 CrossRef.
  23. J. Mayer and R. Kraslukianis, J. Chem. Soc., Faraday Trans., 1991, 87, 2943 RSC.
  24. (a) W. R. Fawcett and G. Liu, J. Phys. Chem., 1992, 96, 4231 CrossRef CAS; (b) P. Suppan, J. Photochem. Photobiol. A: Chem., 1990, 50, 293 CrossRef CAS.
  25. We have eliminated the change of viscosity due to increasing salt concentration by a multiplicative correction ηr=η/η0= 1 + 0.018 c1/2NaClO4+ 0.73 cNaClO4. In eqn. (1) the diffusion controlled rate constants are dependent on η, but also the activation controlled ones if they represent adiabatic reactions with the longitudinal relaxation times in the pre-exponential factor. (See e.g. ; D. F. Calef and and P. G. Wolynes, J. Chem. Phys., 1983, 78, 430, 3387 Search PubMed; E. M. Kosower and and D. Huppert, Annu. Rev. Phys. Chem., 1986, 37, 127; G. Grampp, W. Harre andr and W. Jaenicke, J. Chem. Soc., Faraday Trans., 1, 1987, 83, 161.) CrossRef CAS.
  26. (a) W. Roth, T. Bastigkeit and S. Boerner, Liebigs Ann., 1996, 1313; (b) Wei, J. Chem. Eng. Sci., 1996, 51, 2995 Search PubMed; (c) M. Mozuirkewich, J. J. Lamb and S. W. Benson, J. Phys. Chem., 1984, 88, 6435 CrossRef CAS; (d) J. J. Lamb, M. Mozuirkewich and S. W. Benson, J. Phys. Chem., 1984, 88, 6441 CrossRef CAS; (e) A. Menon and N. Sathyamurthy, J. Phys. Chem., 1981, 85, 1021 CrossRef CAS; (f) R.-R. Lii, R. A. Gorse, jr., M. C. Sauer and S. Gordon, J. Phys. Chem., 1979, 83, 1803 CrossRef CAS; (g) D. D. Davies, R. E. Huie and J. T. Herron, J. Chem. Phys., 1973, 59, 628 CrossRef; (h) J. Connor, A. VanRodselar, R. W. Fair and O. P. Strausz, J. Am. Chem. Soc., 1971, 93, 560 CrossRef; (i) J. L. Jourdain, G. Poulet and G. LeBras, J. Chem. Phys., 1982, 76, 5827 CrossRef CAS; (j) M. Meot-Ner (Mautner) and F. H. Field, J. Am. Chem. Soc., 1978, 100, 1356 CrossRef; (k) D. K. Sen Sharma and P. Kebarle, J. Am. Chem. Soc., 1982, 104, 19 CrossRef CAS; (l) R. Hiatt and S. W. Benson, J. Am. Chem. Soc., 1972, 94, 6886 CrossRef CAS.
  27. V. D. Kiselev and J. G. Miller, J. Am. Chem. Soc., 1975, 97, 4036 CrossRef CAS.
  28. (a) O. Hammerich and V. D. Parker, Acta Chem. Scand. Ser. B, 1983, 37, 379 Search PubMed; (b) J. B. Olson and T. H. Koch, J. Am. Chem. Soc., 1986, 108, 756 CrossRef CAS; (c) J. Wang, Ch. Doubleday, jr. and N. J. Turro, J. Am. Chem. Soc., 1989, 111, 3692.
  29. B. Reitstoen and V. D. Parker, J. Am. Chem. Soc., 1990, 112, 4968 CrossRef CAS.
  30. (a) N. Sutin and B. M. Gordon, J. Am. Chem. Soc., 1961, 83, 70 CrossRef CAS; (b) J. N. Braddock and T. J. Meyer, J. Am. Chem. Soc., 1973, 95, 3158 CrossRef CAS; (c) J. L. Cramer and T. J. Meyer, Inorg. Chem., 1974, 13, 1250 CrossRef CAS.
  31. E. Baggott and M. J. Pilling, J. Chem. Soc., Faraday Trans 1, 1983, 79, 221 RSC.
  32. (a) N. J. Turro, G. F. Lehr, J. A. Butcher, R. A. Moss and W. Guo, J. Am. Chem. Soc., 1982, 104, 1754 CrossRef CAS; (b) R. A. Moss, W. Lawrynowicz, N. J. Turro, I. R. Gould and Y. Cha, J. Am. Chem. Soc., 1986, 108, 7028 CrossRef CAS.
  33. (a) S. R. L. Fernando, U. S. M. Maharoof, K. D. Deshayes, T. H. Kinstle and M. T. Ogawa, J. Am. Chem. Soc., 1996, 118, 5783 CrossRef CAS; (b) H. A. Garrera, J. J. Cosa and C. M. Previtali, J. Photochem. Photobiol. A: Chem., 1991, 56, 267 CrossRef CAS; (c) R. B. Murphy and W. F. Libby, J. Am. Chem. Soc., 1977, 99, 39 CrossRef CAS; (d) H. Werner, E. O. Fischer, B. Heckl and C. G. Kreiter, J. Organomet. Chem., 1971, 28, 367 CrossRef CAS; (e) T. Shimomura, K. J. Tölle, J. Smid and M. Scwarc, J. Am. Chem. Soc., 1967, 84, 796 CrossRef; (f) A.-M. Albrecht-Gary, C. Dietrich-Buchecker, Z. Saad and J.-P. Sauvage, J. Chem., Soc., Chem. Commun., 1992, 280 RSC.
  34. (a) M. Mozurkewich and S. W. Benson, J. Phys. Chem., 1984, 88, 6429 CrossRef CAS; (b) K. N. Houk and N. G. Rodan, J. Am. Chem. Soc., 1984, 106, 4293 CrossRef CAS; (c) R. A. Marcus and N. Sutin, Inorg. Chem., 1975, 14, 213 CrossRef CAS; (d) R. A. Marcus, J. Electroanal. Chem., 1977, 82, 9 CrossRef; (e) W. Stiller, R. Schmidt, E. Müller and N. V. Shokierev, Z. Phys. Chem. (Munich), 1992, 162, 119; (f) Y. Chen, A. Rauk and E. Tschuikow-Roux, J. Phys. Chem., 1991, 95, 9900 CrossRef CAS; (g) R. A. Marcus and N. Sutin, Comments Inorg. Chem., 1986, 5, 119 CAS.
  35. Experimental quantities are usually indicated by the doubledagger symbol. The relationships are ΔGG*–RT ln (hZ/kT); ΔSS*+R ln (hZ/kT)–½R; ΔHH*–½RT.34c.
  36. K. N. Houk, N. G. Rodan and J. Mareda, J. Am. Chem. Soc., 1984, 106, 4291 CrossRef CAS.
  37. This is a simplification, Marcus defines an (N– 1)-dimensional hypersurface, the set of configurations which separate the reactant and product configurations to be the transition state (R. A. Marcus, in Investigation of Rates and Mechanisms of Reactions, ed. E. S. Lewis, Techniques of Chemistry, vol. VI, Part 1, ed. A. Weissberger, J. Wiley & Sons, New York, London, Sydney, Toronto, 1974, pp. 13–46 Search PubMed.
  38. The form of the surfaces is dependent on the specific reaction. Houk and Rodan34b have arbitrarily used Morse curves, we have also used parabolas for G, H and TS as well as a Gaussian for G and a parabola for TS: It seems that for all forms of the surfaces the situation of negative activation enthalpy can be reached when the reaction parameters are chosen suitably.
Click here to see how this site uses Cookies. View our privacy policy here.