The role of ions in the continuous-wave plasma polymerisation of acrylic acid

(Note: The full text of this document is currently only available in the PDF Version )

S Candan, A J. Beck, L O'Toole, R D. Short, A Goodyear and N St J. Braithwaite


Abstract

Ion flux, mass spectral and mass deposition rate measurements have been made in radiofrequency-induced continuous-wave plasmas of acrylic acid. At 1 W input power, an ion flux of 0.05±0.1×1018 ions m-2 s-1 was measured for acrylic acid. At this power, ions corresponding to (2M+H)+ and (3M+H)+ were prominent in the positive-ion mass spectrum. When this spectrum was corrected for the transmission function of the quadrupole mass spectrometer (conservatively taken as intensity∝m-1), it was evident that the cationic portion of plasma contained many ions of high m/z, as opposed to small fragments of acrylic acid. The m/z of the ‘average’ ion was calculated as 115. The mass of ions arriving at a solid surface in the centre of the plasma was then calculated by multiplying the flux by the average mass to give 9.6 µg m-2 s-1. This value represents a significant fraction of the total mass deposited, determined by means of a quartz crystal mass balance (45.5 µg m-2 s-1). Repeating the calculation for a 5 W plasma yields an ion mass flux of 39.6 µg m-2 s-1 (measured mass deposition of 57.3 µg m-2 s-1). At 15 W, the calculated mass deposited (based on ion flux) exceeds that measured by the quartz mass balance. The ‘average’ ion mass decreased as plasma input power increased.

Based on these data, and XPS measurements of the solid-phase deposit we make a first attempt at describing semi-quantitatively the possible role of ions in deposit formation.


References

  1. S. Morita and S. Hattori, in Plasma Deposition, Treatment, and Etching of Polymers, ed. R. d'Agostino, Academic Press, London, 1990, ch. 6 Search PubMed.
  2. A. Chilkoti, B. D. Ratner and D. Briggs, Anal. Chem., 1991, 63, 1612 CrossRef CAS.
  3. W. Gombotz and A. Hoffman, J. Appl. Polym. Sci., 1989, 37, 91 CrossRef CAS.
  4. N. Inagaki and M. Matsunga, Polym. Bull., 1986, 13, 349.
  5. M. Sanchez Urrutia, H. P. Schreiber and M. R. Wertheimer, J. Appl. Polym. Sci., Polym. Symp., 1988, 42, 305 Search PubMed.
  6. H. S. Munro, R. J. Ward, M. C. Davies and R. D. Short, Polymer, 1993, 34, 2250 CrossRef CAS.
  7. M. E. Ryan, A. M. Hayes and J. P. S. Badyal, Chem. Mater., 1996, 8, 37 CrossRef CAS; C. L. Rinsch, X. Chen, V. Panchalingam, R. C. Eberhart, J. H. Wang and R. B. Timmons, Langmuir, 1996, 12, 2995 CrossRef CAS.
  8. A. J. Beck, A. P. Ameen, L. O'Toole, F. R. Jones and R. D. Short, J. Chem. Soc., Chem. Commun., 1995, 1053 RSC.
  9. H. Yasuda, Plasma Polymerisation, Academic Press, London, 1985 Search PubMed.
  10. A. Grill, Cold Plasmas in Materials Fabrication, IEEE Press, Piscataway, 1993, pp. 186–187 Search PubMed.
  11. A. J. Beck, F. R. Jones and R. D. Short, J. Chem. Soc., Faraday Trans., 1998, 94, 559 RSC.
  12. L. O'Toole, A. J. Beck, A. P. Ameen, F. R. Jones and R. D. Short, J. Chem. Soc., Faraday Trans., 1995, 91, 3907 RSC.
  13. L. O'Toole and R. D. Short, J. Chem. Soc., Faraday Trans., 1997, 93, 1141 RSC.
  14. N. St. J. Braithwaite, J. P. Booth and G. Cunge, Plasma Sources Sci. Technol., 1996, 5, 677 CrossRef CAS.
  15. A. J. Beck, R. M. France, A. M. Leeson, R. D. Short, A. Goodyear and N. St. J. Braithwaite, Chem. Commun., 1998, 1221 RSC.
  16. L. O'Toole, R. D. Short, A. P. Ameen and F. R. Jones, J. Chem. Soc., Faraday Trans., 1995, 9, 1363 RSC.
  17. S. G. Ingram and N. St. J. Braithwaite, J. Appl. Phys., 1990, 68, 5519 CrossRef CAS.
  18. D. Briggs, Surface Analysis of Polymers by XPS and SIMS, Cambridge Solid State Series, Cambridge University Press, 1998, pp. 112–115 Search PubMed.
  19. M. R. Alexander and T. M. Duc, J. Mater. Chem., 1998, 8, 937 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.