Chlorine–nickel interactions in gas phase catalytic hydrodechlorination: catalyst deactivation and the nature of reactive hydrogen

(Note: The full text of this document is currently only available in the PDF Version )

Eun-Jae Shin, Andreas Spiller, George Tavoularis and Mark A. Keane


Abstract

The gas phase hydrodechlorination of chlorobenzene and 3-chlorophenol (where 473 K⩽T⩽573 K) has been studied using a 1.5% w/w Ni/SiO2 catalyst which was also employed to promote the hydrogenation of benzene, cyclohexene and phenol. In the former two instances the catalyst was 100% selective in removing the chlorine substituent, leaving the aromatic ring intact. While the dechlorination of chlorobenzene readily attained steady state with no appreciable deactivation, the turnover of 3-chlorophenol to phenol was characterised by both a short and a long term loss of activity. Chlorine coverage of the catalyst surface under reaction conditions was probed indirectly by monitoring, via pH changes in an aqueous NaOH trap, HCl desorption after completion of the catalytic step. Contacting the catalyst with the chlorinated reactants was found to severely limit and, depending on the degree of contact, completely inhibit aromatic ring reduction although a high level of hydrodechlorination activity was maintained. Hydrogen temperature programmed desorption (TPD) reveals the existence of three forms of surface hydrogen which are tentatively assigned as: (i) hydrogen bound to the surface nickel; (ii) hydrogen at the nickel/silica interface; (iii) spillover hydrogen on the silica support. The effect of chlorine–nickel interactions on the resultant TPD profiles is presented and discussed. The (assigned) spillover hydrogen appears to be hydrogenolytic in nature and is responsible for promoting hydrodechlorination while the hydrogen that is taken to be chemisorbed on, and remains associated with, the surface nickel metal participates in aromatic hydrogenation. Hydrodechlorination proceeds via an electrophilic mechanism, possibly involving spillover hydronium ions. The experimental catalytic data are adequately represented by a kinetic model involving non-competitive adsorption between hydrogen and the chloroaromatic, where incoming chloroaromatic must displace the HCl that remains on the surface after the dechlorination step. Kinetic parameters extracted from the model reveal that chlorophenol has a higher affinity than chlorobenzene for the catalyst surface but the stronger interaction leads to a greater displacement of electron density at the metal site and this ultimately leads to catalyst deactivation.

The reductive dehalogenation of organic halides is not only important as a synthetic rout but is now gaining increasing significance as a potential methodology for treating toxic halogenated waste In the latter application, the organic halide is converted to the corresponding hydrocarbon and the HCl that is produced can be readily separated while the hydrocarbon is recycled as a means of waste minimisation. Thermal hydrodechlorination processes only proceed to an appreciable degree at temperatures in excess of 973 K5 but the presence of a catalyst lowers the operating temperature significantly The catalytic hydrodechlorination of chlorobenzene and chlorophenol(s), known environmental hazards promoted using a solid silica supported nickel catalyst is considered in this paper. The catalytic hydrodechlorination of chlorobenzene(s) has been reported in both the ga–11 and liqui–14 phases using palladium–16 platinum rhodiu and nicke based catalysts. The treatment of chlorophenols has, by comparison, received less attention but catalytic data are available for the liquid phase reaction over carbon supported palladiu and gas phase transformations over nickel system as well as the electrochemical dechlorination on palladized electrodes Liquid phase hydrodehalogenations can proceed in the presence of both molecular hydrogen (at pressures up to 50 atm) and hydrogen donors such as metal hydrides, formic acid and its salts and alcohols The mechanism of C–Cl bond hydrogenolysis in heterogeneous systems is still far from understood and a number of kinetic models have been propose–11,13,15 to account for the observed catalytic trends. Moreover, the reaction has been viewed in terms of both electrophili and nucleophili substitution and attempts have been made to identify the possible reactant–catalyst interactions A marked drop in dechlorination activity with reaction time has been reported for supported palladium rhodiu and bulk nickel catalyst while time invariant reaction profiles have been generated for Ni/Al2O3 (ref. 8) and a Pt/zeolite The drop in dechlorination activity has been linked in one instance to a loss of the supported active phas and also to a surface poisoning due to the formation of stable surface chloride species The study of catalytic dechlorination is still in a formative stage and the published studies are, in essence, a compilation of rate data which characterise individual systems while such issues as the nature of the reactive adsorbed species, the catalytically active site(s) and the source of catalyst deactivation (when it occurs) are still not established. In this paper we provide kinetic data for the gas phase (molecular) hydrogen treatment of chlorobenzene and 3-chlorophenol and, where feasible, compare our results with the above cited reports. The effect of prolonged exposure of the nickel/silica catalyst to concentrated chlorinated aromatic gas streams is examined, particularly in terms of the changes to the nature of the surface reactive hydrogen.


References

  1. A. R. Pinder, Synthesis, 1980, 425 CrossRef CAS.
  2. V. V. Grushin and H. Alper, Chem. Rev., 1994, 94, 1047 CrossRef CAS.
  3. F. Gioia, J. Hazard. Mater., 1991, 26, 243 CrossRef CAS.
  4. V. V. Lunin and E. S. Lokteva, Russ. Chem. Bull., 1996, 45, 1519.
  5. R. Louw, H. Dijks and P. Mulder, Chem. Ind., 1983, 19, 759 Search PubMed.
  6. V. Gioia, V. Famiglietti and F. Murena, J. Hazard Mater., 1993, 33, 63 CrossRef.
  7. B. J. Alloway and D. C. Ayres, Chemical Principles of Environmental Pollution, Blackie, Glasgow, 1993 Search PubMed.
  8. A. R. Suzdorf, S. V. Morozov, N. N. Anshits, S. I. Tsiganova and A. G. Anshits, Catal. Lett., 1994, 29, 49 CAS.
  9. B. Coq, G. Ferrat and F. Figueras, J. Catal., 1986, 101, 434 CrossRef CAS.
  10. B. Hagh and D. Allen, AIChE J., 1990, 36, 773 CAS.
  11. J. Estelle, J. Ruz, Y. Cesteros, R. Fernadez, P. Salagre, F. Medina and J.-E. Sueiras, J. Chem. Soc., Faraday Trans., 1996, 92, 2811 RSC.
  12. E. J. Creyghton, M. H. W. Burgers, J. C. Jensen and H. van Bekkum, Appl. Catal. A: Gen., 1995, 128, 275 CrossRef CAS.
  13. F. Murena, V. Famiglietti and F. Gioia, Environ. Prog., 1993, 12, 231 CAS.
  14. P. Bodnariuk, B. Coq, G. Ferrat and F. Figueras, J. Catal., 1989, 116, 459 CAS.
  15. P. Dini, J. C. Bart and N. Giordano, J. Chem. Soc., Perkin Trans., 2, 1975, 14, 1479 RSC.
  16. B. Hagh and D. Allen, Chem. Eng. Sci., 1990, 45, 2695 CrossRef CAS.
  17. G. Tavoularis and M. A. Keane, J. Chem. Technol. Biotechnol., 1999, 74, 60 CrossRef CAS.
  18. J. B. Hoke, G. N. Gramiccioni and E. N. Balko, Appl. Catal. B: Environ., 1992, 1, 285 CrossRef CAS.
  19. S. Chon and D. T. Allen, AIChE J., 1991, 37, 1730 CrossRef.
  20. E.-J. Shin and M. A. Keane, Appl. Catal. B: Environ., 1998, 18, 241 CrossRef.
  21. I. F. Cheng, Q. Fernando and N. Korte, Environ. Sci. Technol., 1997, 31, 1074 CrossRef CAS.
  22. Y. Ukisu and T. Miyadera, J. Mol. Catal., 1997, 125, 135 Search PubMed.
  23. M. K. Anwer, D. B. Sherman, J. G. Roney and A. F. Spatola, J. Org. Chem., 1991, 56, 6145 CrossRef.
  24. M. Kraus and V. Bazant, in Proc. 5th Int. Congr. Catal., ed. J. W. Hightower, North Holland, Amsterdam, 1969, p. 1073 Search PubMed.
  25. R. B. LaPierre, D. Wu, W. L. Kranich and A. H. Weiss, J. Catal., 1978, 52, 59 CAS.
  26. M. A. Keane, Can. J. Chem., 1994, 72, 372 CAS.
  27. M. A. Keane and P. M. Patterson, J. Chem. Soc., Faraday Trans., 1996, 92, 1413 RSC.
  28. M. A. Keane, J. Catal., 1997, 166, 347 CrossRef CAS.
  29. D. M. Ruthven, Chem. Eng. Sci., 1968, 23, 759 CrossRef CAS.
  30. C. N. Satterfield, Mass Transfer in Heterogeneous Catalysis, M. I. T. Press, Cambridge, MA, 1970, p. 12 Search PubMed.
  31. D. E. Mears, Ind. Eng. Chem. Process Des. Dev., 1971, 10, 543 Search PubMed.
  32. Kirk-Othmer Encyclopedia of Chemical Technology, ed. M. Howe-Grant, John Wiley, New York, 4th edn, 1991, vol. 1, p. 996 Search PubMed.
  33. S. Kovenklioglu, Z. Cao, D. Shah, R. J. Farrauto and E. N. Balko, AIChE J., 1992, 38, 1003 CAS.
  34. D. J. Moon, M. J. Chung, K. Y. Park and S. I. Hong, Appl. Catal. A, 1998, 168, 159 CrossRef CAS.
  35. J. W. Bozzelli, Y.-M. Chen and S. S. C. Chuang, Chem. Eng. Commun., 1992, 115, 1 Search PubMed.
  36. E.-J. Shin and M. A. Keane, J. Catal., 1998, 173, 450 CrossRef CAS.
  37. S. Smeds, T. Salmi, L. P. Lindfors and O. Krause, Appl. Catal. A: Gen., 1996, 144, 177 CrossRef CAS.
  38. G. D. Weatherbee and C. H. Bartholomew, J. Catal., 1984, 87, 55 CAS.
  39. P. G. Glugla, K. M. Bailey and J. L. Falconer, J. Catal., 1989, 115, 24 CAS.
  40. R. Kramer and M. Andre, J. Catal., 1979, 58, 287 CrossRef CAS.
  41. J. A. Konvalinka, P. H. van Oeffelt and J. J. F. Scholten, Appl. Catal., 1981, 1, 141 Search PubMed.
  42. P. I. Lee, Y. J. Huang, J. C. Heydweiller and J. A. Schwartz, Chem. Eng. Commun., 1988, 63, 205 Search PubMed.
  43. D. W. Stockwell, G. Bertucco, G. W. Coulston and C. O. Bennett, J. Catal., 1988, 113, 317 CAS.
  44. W. C. Conner Jr. and J. L. Falconer, Chem. Rev., 1995, 95, 759 CrossRef CAS.
  45. B. Coughlan and M. A. Keane, Zeolites, 1991, 11, 483 CAS.
  46. D. Bianchi, M. Lacroix, G. M. Pajonk and S. J. Teichner, J. Catal., 1979, 59, 467 CAS.
  47. S. J. Teichner, G. M. Pajonk and M. Lacroix, in Surface Properties and Catalysis by Non-Metals, ed. J. P. Bonnelle, Reidel, Dordrecht, 1983, p. 457 Search PubMed.
  48. G. E. Batley, A. Ekstom and P. A. Johnson, J. Catal., 1974, 34, 368 CAS.
  49. M. A. Keane and P. M. Patterson, Ind. Eng. Chem. Res., 1999, 38, 1295 CrossRef CAS.
  50. S. J. Teichner, in New Aspects of the Spillover Effect in Catalysis, ed. T. Inui, Elsevier, Amsterdam, 1993, p. 27 Search PubMed.
  51. S. D. Lin and M. A. Vannice, J. Catal., 1993, 143, 563 CrossRef CAS.
  52. R. B. McLellan and C. G. Harkins, Mater. Sci., 1975, 18, 5 CAS.
  53. R. P. Messmer, D. R. Salahub, K. H. Johnson and C. Y. Yang, Chem. Phys. Lett., 1977, 51, 84 CrossRef CAS.
  54. C. Hoang-Van, Y. Kachaya, S. J. Teichner, Y. Arnaud and J. A. Dalmon, Appl. Catal., 1989, 46, 281 Search PubMed.
  55. M. Kisinova and D. W. Goodman, Surf. Sci., 1981, 108, 64 CrossRef.
  56. T. Halchev and E. Ruckenstein, J. Catal., 1982, 73, 171 CrossRef.
  57. I. L. Simakova and V. A. Semikolenov, Kinet. Katal., 1991, 32, 989 Search PubMed.
  58. D. H. Lenz, W. C. Conner and J. Fraissard, J. Catal., 1987, 117, 281 CrossRef.
  59. U. Roland, R. Salzer, Th. Braunschweig, F. Rossner and H. Winkler, J. Chem. Soc., Faraday Trans., 1995, 91, 1091 RSC.
  60. W. C. Conner, G. M. Pajonk and S. J. Teichner, Adv. Catal., 1986, 34, 1.
  61. F. Rossner and U. Roland, J. Mol. Catal. A, 1996, 112, 401 CrossRef CAS.
  62. U. Roland, Th. Braunschweig and F. Rossler, J. Mol. Catal. A, 1997, 127, 61 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.