Adsorption of pyrrole derivatives in alkali metal cation-exchanged faujasites: comparative studies by surface vibrational techniques, X-ray diffraction and temperature-programmed desorption augmented with theoretical studies Part II. Methylated pyrrole derivatives as probe molecules

(Note: The full text of this document is currently only available in the PDF Version )

Jens Döbler, Horst Förster, Hartmut Fuess, Ekkehard Geidel, Bernd Hunger, Christine Kirschhock, Olaf Klepel and Eike Poschnar


Abstract

The nature and strength of interaction of methylated pyrrole derivatives (N-methylpyrrole, 2-methylpyrrole and 2,5-dimethylpyrrole) adsorbed in alkali metal cation-exchanged faujasites have been investigated by the joint use of temperature-programmed desorption (TPD), infrared spectroscopy and X-ray diffraction accompanied by quantum mechanical studies. It was found that successive methylation of pyrrole leads to an enhancement of the electron donor properties by which the effective strength of interaction can be subtly tuned. However, a complex adsorption behaviour dependent on the kind of cation, the degree of ion exchange and the Si/Al ratio of the zeolites was observed. The results indicate that obviously different kinds of interaction occur simultaneously. To discriminate between different adsorption sites of the probes the experimentally obtained results were verified by quantum mechanical abinitio calculations.


References

  1. H. Förster, H. Fuess, E. Geidel, B. Hunger, H. Jobic, C. Kirschhock, O. Klepel and K. Krause, Phys. Chem. Chem. Phys., 1999, 1, 593 RSC.
  2. J. W. Cornforth and M. E. Fürth, J. Chem. Soc., 1958, 1091 RSC.
  3. A. C. Larson and R. B. Von Dreele, GSAS, General Structure Analysis System, Report LAUR 86-748, Los Alamos National Laboratory, New Mexico, 1995 Search PubMed.
  4. S. Huber, T.-K. Ha and A. Bauder, J. Mol. Struct., 1997, 413–414, 93 CrossRef CAS.
  5. A. N. Fitch, H. Jobic and A. Renouprez, J. Phys. Chem., 1986, 90, 1311 CrossRef CAS.
  6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Revision C.2, Gaussian Inc., Pittsburgh, PA, 1995 Search PubMed.
  7. D. H. Olson, J. Phys. Chem., 1970, 74, 2758 CrossRef CAS.
  8. B. Hunger, S. Matysik, M. Heuchel, E. Geidel and H. Toufar, J. Thermal Anal., 1997, 49, 553 Search PubMed.
  9. B. Hunger, O. Klepel, C. Kirschhock, M. Heuchel, H. Toufar and H. Fuess, Langmuir, in the press Search PubMed.
  10. M. von Szombathely, P. Bräuer and M. Jaroniec, J. Comput. Chem., 1992, 13, 17 CAS.
  11. B. Hunger, M. von Szombathely, J. Hoffmann and P. Bräuer, J. Thermal Anal., 1995, 44, 293 Search PubMed.
  12. R. G. Pearson, Inorg. Chem., 1988, 27, 734 CrossRef CAS.
  13. L. Nygaard, J. T. Nielson, J. Kirchheimer, G. Maltesen, J. Rastrup-Andersen and G. O. Sorensen, J. Mol. Struct., 1969, 3, 491 CrossRef CAS.
  14. R. Heidler, G. O. A. Janssens, W. J. Mortier and R. A. Schoonheydt, Microp. Mater., 1997, 12, 1 Search PubMed.
  15. A. Bauder, private communication.
  16. C. Kirschhock and H. Fuess, Stud. Surf. Sci. Catal., 1994, 84, 843 CAS.
  17. C. Kirschhock and H. Fuess, Zeolites, 1996, 17, 381 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.