Reliable theoretical treatment of molecular clusters: Counterpoise-corrected potential energy surface and anharmonic vibrational frequencies of the water dimer

(Note: The full text of this document is currently only available in the PDF Version )

Pavel Hobza, Ota Bludský and Sándor Suhai


Abstract

Structure, properties and energetics of the water dimer were determined by counterpoise (CP)-corrected gradient optimization which apriori eliminates the basis set superposition error (BSSE). Calculations were carried out at the MP2 level with various basis sets up to the aug-cc-pVQZ one. Besides harmonic vibrational frequencies twelve-dimensional anharmonic frequencies were also determined using the second-order perturbation treatment. Harmonic and anharmonic frequencies were based on CP-corrected Hessians. The equilibrium geometry of the dimer differs from that determined by a standard optimization and the difference becomes small only for the largest basis set (aug-cc-pVQZ). The best theoretical estimate of the intermolecular oxygen–oxygen distance (2.92 Å) is shorter than the experimental result of 2.95 Å. An estimate of the complete basis set limit of the stabilization energy was obtained by extrapolating the stabilization energies as a function of the reciprocal size of the basis set; this value (21.05 kJ mol-1) is slightly smaller than other literature estimates. Adding the changes due to zero-point energy and temperature-dependent enthalpy terms (determined using anharmonic frequencies obtained from the CP-corrected Hessian) we obtain an estimate to the theoretical stabilization enthalpy at 375 K (12.76 kJ mol-1) which is by 0.8–1.3 kJ mol-1 smaller than the literature results. Our theoretical value supports the very low limit of the experimental value. Red shift of the O–H stretching frequency accompanying formation of the dimer was determined at various theoretical levels and best agreement with the experimental value was found for anharmonic frequencies calculated with CP-corrected Hessians.


References

  1. (a) H. B. Jansen and P. Ross, Chem. Phys. Lett., 1969, 3, 140 CrossRef CAS; (b) S. B. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
  2. (a) I. Mayer, Int. J. Quantum Chem., 1983, 23, 341 CrossRef CAS; (b) I. Mayer, in Modelling of Structure and Properties of Molecules, ed. Z. B. Maksic, Ellis Horwood, Chichester, UK, 1987, p. 145 Search PubMed.
  3. B. Paizs and S. Suhai, submitted for publication.
  4. B. Paizs, P. Salvador, M. Duran and S. Suhai, J. Comput. Chem., submitted for publication Search PubMed.
  5. M. W. Feyereisen, D. Feller and D. A. Dixon, J. Phys. Chem., 1996, 100, 2993 CrossRef CAS.
  6. S. S. Xantheas, J. Chem. Phys., 1996, 104, 8821 CrossRef CAS.
  7. A. Halkier, H. Koch, P. Jorgensen, O. Christianses, I. M. Beck Nielsen and T. Helgaker, Theor. Chem. Acc., 1997, 97, 150 CrossRef CAS.
  8. T. R. Dyke, K. M. Mack and J. S. Muenter, J. Chem. Phys., 1977, 66, 498 CrossRef CAS.
  9. J. A. Otudola and T. R. Dyke, J. Chem. Phys., 1980, 72, 5062 CrossRef CAS.
  10. L. A. Curtiss, D. J. Frurip and M. Blander, J. Chem. Phys., 1979, 71, 2703 CrossRef CAS.
  11. C. Munoz-Caro and A. Nino, J. Phys. Chem. A, 1997, 101, 4128 CrossRef CAS.
  12. G. K. Schenter, J. Chem. Phys., 1998, 108, 6222 CrossRef CAS.
  13. S. Simon, M. Duran and J. J. Dannenberg, J. Chem. Phys., 1996, 105, 11024 CrossRef CAS.
  14. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Peterson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. R. Zakrzewski, J. V. Ortiz, J. B. Foresman, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repolge, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzales and J. A. Pople, GAUSSIAN 94, Gaussian, Pittsburgh, PA, 1995.
  15. I. Mayer and P. R. Surján, Chem. Phys. Lett., 1992, 191, 497 CrossRef CAS.
  16. O. Bludský, V. Špirko, R. Kobayashi and P. Jorgensen, Chem. Phys. Lett., 1994, 228, 568 CrossRef CAS.
  17. R. Kobayashi, O. Bludský, H. Koch and P. Jorgensen, Chem. Phys. Lett., 1993, 215, 576 CrossRef CAS.
  18. I. M. Mills, in Molecular spectroscopy: modern research, ed. K. Rao Narahari and C. W. Mathews, Academic Press, New York, 1972, p. 115 Search PubMed.
  19. P. E. Maslen, N. C. Handy, R. D. Amos and D. Jayatilaka, J. Chem. Phys., 1992, 97, 4233 CrossRef CAS.
  20. N. C. Handy, P. E. Maslen, R. D. Amos, J. S. Andrews, C. C. W. Murray and G. J. Laming, Chem. Phys. Lett., 1992, 197, 506 CrossRef CAS.
  21. P. W. Atkins, Physical Chemistry, Oxford University Press, Oxford, 1994 Search PubMed.
  22. G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrand, Princeton, NJ, 1969 Search PubMed.
  23. L. Fredin, B. Nelander and G. Ribbegard, J. Chem. Phys., 1977, 66, 4065 CrossRef CAS.
  24. B. Nelander, J. Chem. Phys., 1978, 69, 3870 CrossRef.
  25. R. M. Bentwood, A. T. Barnes and W. J. Orville-Thomas, J. Mol. Spectrosc., 1980, 84, 391 CrossRef CAS.
  26. R. H. Page, J. G. Frey, Y.-R. Shen and Y. T. Lee, Chem. Phys. Lett., 1984, 106, 373 CrossRef CAS.
  27. F. Huisken, M. Kaloudis and A. Kulche, J. Chem. Phys., 1996, 104, 17 CrossRef CAS.
  28. G. A. Yeo and P. A. Ford, Struct. Chem., 1992, 3, 75 CAS.
  29. P. Hobza and Z. Havlas, Theor. Chem. Acc., 1998, 99, 372 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.