On the correlation of Ni oxidation states and electronic conductivity of (R,A)NiO3-δ (R=lanthanides, A=alkaline earths, Th) perovskites with catalytic activity for H2O2 decomposition

(Note: The full text of this document is currently only available in the PDF Version )

Jose′ A. Alonso, María J. Martínez-Lope, Horacio Falcón and Raúl E. Carbonio


Abstract

Several Ni-containing perovskite-related oxides of stoichiometries RNiO3 (R=La, Pr, Eu), La1-xAxNiO3 (A=Sr, Th), LaNiO2.5, BaNiO2 and BaNiO3 were studied as catalysts for hydrogen peroxide decomposition. In all cases the samples were single-phase materials characterized structurally by X-ray and neutron power diffraction. In these perovskites, Ni cations exhibited oxidation states between 2+ and 4+, as previously determined by thermogravimetric (TG) analysis under reducing conditions. In a set of samples prepared at 1000°C under 200 bar of O2 pressure, the catalytic activity at 30°C, measured by the gasometric method, showed a maximum value for La0.9Sr0.1NiO3, containing 90% of Ni3+ and 10% of Ni4+. However, the activity was very poor for BaNiO3, with 100% Ni4+, due to the insulating character of this oxide. The activity rate of PrNiO3 and EuNiO3, showing characteristic metal–insulator transitions as a function of temperature, was much higher for PrNiO3, which is in the metallic regime at the measuring temperature, whereas EuNiO3 remained in the semiconducting (insulating) regime. A linear relationship between the pre-exponential factor and the apparent activation energy, known as the compensation effect, was found for the metallic samples, which suggests that the catalytic surface is heterogeneous, showing active sites with different activation energies.


References

  1. L. G. Tejuca, J. L. G. Fierro and J. M. D. Tascon, Adv. Catal., 1989, 36, 237 CAS.
  2. R. J. H. Voorhoeve, in Advanced Materials in Catalysis, ed. J. J. Burton and R. L. Garten, Academic Press, New York, 1977, ch. 5 Search PubMed.
  3. L. G. Tejuca, J. Less-Common Met., 1989, 146, 261 Search PubMed.
  4. M. Crespin, P. Levitz and L. Gatineau, J. Chem. Soc., Faraday Trans. 2, 1983, 79, 1181 RSC.
  5. J. A. Alonso and M. J. Martínez-Lope, J. Chem. Soc., Dalton Trans., 1995, 2819 RSC.
  6. J. A. Alonso, M. J. Martínez-Lope, J. L. García-Munoz and M. T. Fernández-Díaz, J. Phys.: Condens. Matter, 1997, 9, 6417 CrossRef CAS.
  7. J. B. Goodenough and P. Raccah, J. Appl. Phys., 1965, 36, 1031 CAS.
  8. G. Démazeau, A. Marbeuf, M. Pouchard and P. Hagenmuller, J. Solid State Chem., 1971, 3, 582 CrossRef CAS.
  9. J. L. García-Muñoz, J. Rodríguez-Carvajal, P. Lacorre and J. B. Torrance, Phys. Rev. B, 1992, 46, 4414 CrossRef CAS.
  10. J. A. Alonso, M. J. Martínez-Lope and M. A. Hidalgo, J. Solid State Chem., 1995, 116, 146 CrossRef CAS.
  11. J. L. García-Munoz, M. Suaaidi, M. J. Martínez-Lope and J. A. Alonso, Phys. Rev. B, 1995, 52, 13563 CrossRef CAS.
  12. Y. Takeda, F. Kanamaru, M. Shimada and M. Koizumi, Acta Cryst. B, 1976, 32, 2464 CrossRef.
  13. R. Gottschall, R. Schöllhorn, M. Muhler, N. Jansen, D. Walcher and P. Gütlich, Inorg. Chem., 1998, 37, 1513 CrossRef CAS.
  14. P. Lacorre, J. B. Torrance, J. Pannetier, A. I. Nazzal, P. W. Wang and T. C. Huang, J. Solid State Chem., 1991, 91, 225 CrossRef CAS.
  15. J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo and Ch. Niedermayer, Phys. Rev. B, 1992, 45, 8209 CrossRef CAS.
  16. J. A. Alonso, M. J. Martínez-Lope and I. Rasines, J. Solid State Chem., 1995, 120, 170 CrossRef CAS.
  17. A. K. Ladavos and P. J. Pomonis, J. Chem. Soc., Faraday Trans., 1991, 87, 3291 RSC.
  18. M. Stojanivic, R. G. Haverkamp, C. A. Mims, H. Moudallal and A. Jacobson, J. Catal., 1997, 165, 315 CrossRef CAS.
  19. M. Stojanivic, C. A. Mims, H. Moudallal, Y. L. Yang and A. Jacobson, J. Catal., 1997, 166, 324 CrossRef CAS.
  20. D. Ferri, L. Forni, M. A. P. Dekkers and B. E. Nieuwenhuys, Appl. Catal. B, 1998, 16, 339 CrossRef CAS.
  21. Z. Yu, L. Gao, S. Yuan and Y. Wu, J. Chem. Soc., Faraday Trans., 1992, 88, 3245 RSC.
  22. J. L. G. Fierro, J. M. D. Tascón and L. G. Tejuca, J. Catal., 1985, 93, 83 CAS.
  23. Z. Zhao, X. Yang and Y. Wu, Appl. Catal. B, 1996, 8, 281 CrossRef CAS.
  24. Y. Teraoka, H. Fukuda and S. Kagawa, Chem. Lett., 1990, 1.
  25. H. Falcón and R. E. Carbonio, J. Electroanal. Chem., 1992, 339, 69 CrossRef CAS.
  26. H. Falcón and R. E. Carbonio, J. Catal., submitted Search PubMed.
  27. S. B. Kanungo, K. M. Parida and B. R. Sant, Electrochim. Acta, 1981, 26, 1157 CrossRef CAS.
  28. R. Gerischer and H. Gerischer, Z. Phys. Chem. N. F., 1966, 6, 1978.
  29. M. J. Martínez-Lope and J. A. Alonso, Eur. J. Inorg. Solid State Chem., 1995, 32, 361 Search PubMed.
  30. M. J. Martínez-Lope and J. A. Alonso, Eur. J. Inorg. Solid State Chem., 1995, 32, 373 Search PubMed.
  31. S. P. Jiang, Z. G. Lin and A. C. C. Tseung, J. Electrochem. Soc., 1990, 137, 759 CAS.
  32. R. E. Carbonio, D. Tryk and E. Yeager, Proceedings of the Symposium on Electrode Materials and Proceedings for Energy Conversion and Storage, The Electrochemical Society, Pennington, N.J., 1987, 87-1, 238 Search PubMed.
  33. M. Spiro, in Comprehensive Chemical Kinetics, eds. R. G. Compton, Elsevier, Amsterdam, 1989, vol. 28, ch. 2, p. 69 Search PubMed.
  34. K. J. Mysels, Pure Appl. Chem., 1976, 46, 73.
  35. I. D. Brown, in Structure and Bonding in Crystals, ed. M. O'Keefe and A. Navrotsky, Academic Press, New York, 1981, vol. 2, pp. 1-30 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.