Why are some polycyclic aromatic hydrocarbons extremely reactive?

(Note: The full text of this document is currently only available in the PDF Version )

Jun-ichi Aihara


Abstract

Higher members of the polyacene series are extremely reactive although they are aromatic in nature. This aspect of aromatic chemistry can be explained using conventional indices of kinetic stability, such as a localization energy and a HOMO–LUMO energy separation. Large polyacene molecules have smaller localization energies and smaller HOMO–LUMO energy separations than their respective polyene references defined using matching polynomials. These molecules are presumed to be thermodynamically more stable but kinetically less stable than non-aromatic polyolefins. The same situation is sometimes observed in other groups of polycyclic aromatic hydrocarbons (PAHs). Such highly reactive PAH molecules were found to be substructures of metallic one-dimensional benzenoid polymers.


References

  1. M. J. S. Dewar and C. de Llano, J. Am. Chem. Soc., 1969, 69, 789 CrossRef.
  2. J. Aihara, J. Am. Chem. Soc., 1976, 98, 2750 CrossRef CAS.
  3. I. Gutman, M. Milun and N. Trinajstić, J. Am. Chem. Soc., 1977, 99, 1692 CrossRef CAS.
  4. J. Aihara, J. Am. Chem. Soc., 1977, 99, 2048 CrossRef CAS.
  5. E. Clar, Polycyclic Hydrocarbons, Academic Press, New York, 1964, vol. I and II Search PubMed.
  6. E. Clar, The Aromatic Sextet, Wiley, London, 1972 Search PubMed.
  7. G. W. Wheland, J. Am. Chem. Soc., 1942, 64, 900 CrossRef CAS.
  8. A. Streitwieser, Jr., Molecular Orbital Theory for Organic Chemists, Wiley, New York, 1961, ch. 11 Search PubMed.
  9. J. Aihara, MATCH, 1993, 29, 35 Search PubMed.
  10. J. Aihara, J. Am. Chem. Soc., 1995, 117, 4130 CrossRef CAS.
  11. H. Hosoya, M. Shobu, K. Takano and Y. Fujii, Pure Appl. Chem., 1983, 55, 269 CAS.
  12. M. Shobu and H. Hosoya, Ochanomizu Joshi Daigaku Shizen Kagaku Hokoku, 1981, 32, 55 Search PubMed.
  13. M. L. Herr, Tetrahedron, 1972, 28, 5139 CrossRef CAS.
  14. W. C. Herndon, J. Org. Chem., 1975, 40, 3583 CrossRef CAS.
  15. I. Gutman, J. Mol. Struct. (THEOCHEM), 1999, 460, 47 CrossRef CAS.
  16. W. J. le Noble, A. R. Miller and S. D. Hamann, J. Org. Chem., 1977, 42, 338 CrossRef CAS.
  17. B. A. Hess, Jr. and L. J. Schaad, J. Am. Chem. Soc., 1971, 93, 2413 CrossRef CAS.
  18. R. C. Haddon and T. Fukunaga, Tetrahedron Lett., 1980, 21, 1191 CrossRef CAS.
  19. R. G. Pearson, J. Am. Chem. Soc., 1988, 100, 2092 CrossRef.
  20. Z. Zhou, R. G. Parr and J. F. Garst, Tetrahedron Lett., 1988, 29, 4843 CrossRef CAS.
  21. Z. Zhou and R. G. Parr, J. Am. Chem. Soc., 1989, 111, 7371 CrossRef CAS.
  22. P. Fowler, Nature (London), 1991, 350, 20 CrossRef.
  23. J. Aihara, Theor. Chem. Acc., in press Search PubMed.
  24. M. Yoshida and J. Aihara, PCCP, 1999, 1, 227 Search PubMed.
  25. C. A. Coulson and G. S. Rushbrooke, Proc. Roy. Soc. Edinburgh, Sect. A, 1948, 62, 350 Search PubMed.
  26. H. Hosoya, M. Aida, R. Kumagai and K. Watanabe, J. Comput. Chem., 1987, 8, 358 CAS.
  27. H. Hosoya, H. Kumazaki, K. Chida, M. Ohuchi and Y.-D. Gao, Pure Appl. Chem., 1990, 62, 445 CAS.
  28. Y.-D. Gao, H. Kumazaki, J. Terai, K. Chida and H. Hosoya, J. Math. Chem., 1993, 12, 279 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.