Time-resolved insitu X-ray diffraction study of MCM-41 structure formation from a homogeneous environment

(Note: The full text of this document is currently only available in the PDF Version )

Jiří Rathouský, Günter Schulz-Ekloff, Jiří Had and Arnošt Zukal


Abstract

Formation of an ordered hexagonal mesoporous structure of siliceous materials in a homogeneous environment using Na2SiO3 as a silica source and cetyltrimethylammonium bromide as a structure directing agent has been studied by means of a time-resolved insitu X-ray diffraction technique. In this synthesis route the precipitation of solid phase is due to acidification of the reaction mixture, achieved by the hydrolysis of ethyl acetate. Before acidification, the reaction mixture contains disordered elongated rod-like surfactant micelles, whose surfaces are partly covered with silicate anions. Owing to the decrease in pH, silicate anions begin to polymerize; micelles are arranged into a hexagonal array through the intermicellar silicate condensation. Thus, the polycondensation of silicate species represents the driving force of the formation of solid particles. Due to the replacement of OH groups by Si–O–Si bonds in the course of polycondensation, the structure contracts; the increasing density of silica pore walls results in the increasing integral net intensity of the (100) reflection. Since the integral width of this reflection remains practically constant, the size of coherent regions does not change during the reaction mixture ageing from the size that has been achieved at the earlier stages of the synthesis.


References

  1. S. O'Brien, R. J. Francis, S. J. Price, D. O'Hare, S. M. Clark, N. Okazaki and K. Kuroda, J. Chem. Soc., Chem. Commun., 1995, 2423 RSC.
  2. M. Lindén, S. A. Schunk and F. Schüth, Angew. Chem. Int. Ed. Engl., 1998, 37, 821 CrossRef CAS.
  3. A. Firouzi, D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D. Stucky and B. F. Chmelka, Science, 1995, 267, 1138 CrossRef CAS.
  4. D. C. Calabro, E. W. Valyocsik and F. X. Ryan, Microporous Mater., 1996, 7, 243 CrossRef CAS.
  5. J. Zhang, Z. Luz and D. Goldfarb, J. Phys. Chem., 1997, 101, 7087 Search PubMed.
  6. J. Rathouský, M. Zukalová, A. Zukal and J. Had, Collect. Czech. Chem. Commun., 1998, 63, 1893 CrossRef CAS.
  7. G. Schulz-Ekloff, J. Rathouský and A. Zukal, Microporous Mesoporous Mater., 1999, 27, 273 CrossRef CAS.
  8. G. Schulz-Ekloff, J. Rathouský and A. Zukal, J. Inorg. Mater., 1999, 1, 97 Search PubMed.
  9. J. Rathouský, G. Schulz-Ekloff and A. Zukal, Microporous Mater., 1996, 6, 385 CrossRef CAS.
  10. G. Schulz-Ekloff, J. Rathouský and A. Zukal, in Synthesis of Porous Materials, ed. M. L. Occelli and H. Kessler, Marcel Dekker, New York, 1997, p. 391 Search PubMed.
  11. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373 CrossRef.
  12. J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., 1999, 38, 58 CrossRef.
  13. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schüth and G. D. Stucky, Chem. Mater., 1994, 6, 1176 CrossRef CAS.
  14. Y. S. Lee, D. Surjadi and J. F. Rathman, Langmuir, 1996, 12, 6202 CrossRef CAS.
  15. J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, London, 1985, p. 252 Search PubMed.
  16. N. Coombs, D. Khushalani, S. Oliver, G. A. Ozin, G. Ch. Shen, I. Sokolov and H. Yang, J. Chem. Soc., Dalton Trans., 1997, 3941 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.