Diamond deposition in acetylene–oxygen flames: nucleation and early growth on molybdenum substrates for different pretreatment procedures

(Note: The full text of this document is currently only available in the PDF Version )

Burak Atakan, Karsten Lummer and Katharina Kohse-Höinghaus


Abstract

The nucleation phase of diamond is of great importance for its epitaxial growth, and a detailed understanding of this process is therefore desired for many applications. It is known that in chemical vapour deposition (CVD) of diamond films, the pretreatment of the substrate surface may influence the initial growth period. Reasons for this observation are, however, often unclear, and several nucleation concepts have been discussed. In this study, the nucleation and early growth phase of diamond in combustion CVD was investigated for molybdenum substrates as a function of surface pretreatment. In acetylene–oxygen flames at atmospheric pressure, four different pretreatment procedures were employed including polishing with Al2O3 (no specific pretreatment) or additional polishing with diamond paste, graphite or adamantane. Diamond quality, average crystal size and mechanical stress of the films were analysed as a function of deposition time. Diamond growth was found for all these substrate surface preparations; however, qualitative differences were observed in the nucleation kinetics. Upon polishing with diamond paste, the initial nucleation phase is considerably shortened and the stress of the diamond films decreases monotonically. In the other three cases, diamond growth is observed after an induction period, while film quality and mechanical stress pass a maximum. The latter observation is thought to reflect the formation of a coherent film from isolated and unaligned crystals. The results are in accord with diamond nucleation on an intermediate molybdenum carbide layer.


References

  1. Law-Pressure Synthetic Diamond, ed. B. Dischler and C. Wild, Springer, Berlin-Heidelberg, 1998 Search PubMed.
  2. Diamond and Diamond-like Films and Coatings, ed. R. E. Clausing, L. L. Horton, J. C. Angus and P. Koidl, Plenum Press, New York, 1991, p. 2 Search PubMed.
  3. M. N. R. Ashfold, P. W. Way, C. A. Rego and N. M. Everitt, Chem. Soc. Rev., 1994, 21 RSC.
  4. A. G. Löwe, A. T. Hartlieb, J. Brand, B. Atakan and K. Kohse-Höinghaus, Combust. Flame, 1999, 118, 37 CrossRef CAS.
  5. B. Atakan, M. Beuger and K. Kohse-Höinghaus, Phys. Chem. Chem. Phys., 1999, 1, 705 RSC.
  6. M. Ece, B. Oral, J. Patscheider and K.-H. Ernst, Diamond Relat. Mater., 1995, 4, 720 CrossRef CAS.
  7. R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen and L. Ley, J. Appl. Phys., 1996, 79, 768 CrossRef.
  8. G. S. Yang and M. Aslam, Appl. Phys. Lett., 1995, 66, 311 CrossRef CAS.
  9. D. M. Gruen, S. Liu, A. R. Krauss, J. Luo and X. Pan, Appl. Phys. Lett., 1994, 64, 1502 CrossRef CAS.
  10. P. N. Barnes and R. L. C. Wu, Appl. Phys. Lett., 1993, 62, 37 CrossRef CAS.
  11. R. J. Meilunas, R. P. H. Chang, S. Liu and M. M. Kappes, Appl. Phys. Lett., 1991, 59, 3461 CrossRef CAS.
  12. R. Kohl, C. Wild, N. Herres, P. Koidl, B. R. Stoner and J. T. Glass, Appl. Phys. Lett., 1993, 63, 1792 CrossRef CAS.
  13. X. Jiang, E. Boettger, M. Paul and C.-P. Klages, Appl. Phys. Lett., 1994, 5, 1519 CrossRef.
  14. T. Abe, M. Suemitsu, N. Miyamoto and N. Sato, J. Appl. Phys., 1993, 73, 71 CrossRef.
  15. B. Lux and R. Haubner, in ref. 2, p. 579.
  16. J. Singh and M. Vellaikal, J. Appl. Phys., 1993, 73, 2831 CrossRef CAS.
  17. K. V. Ravi and C. A. Koch, Appl. Phys. Lett., 1990, 57, 348 CrossRef CAS.
  18. W. Zhu, R. C. McCune, J. E. deVries, M. A. Tamor and K. Y. Simon Ng, Diamond Relat. Mater., 1995, 4, 220 CrossRef CAS.
  19. M. Kawarada, K. Kurihara and K. Sasaki, Diamond Relat. Mater., 1993, 2, 1083 CAS.
  20. D. Michau, B. Tanguy, G. Demazeau, M. Couzi and R. Cavagnat, Diamond Relat. Mater., 1993, 2, 19 CAS.
  21. P. Reinke and P. Oelhafen, J. Appl. Phys., 1998, 84, 2612 CrossRef CAS.
  22. Z. Li, L. Wang, T. Suzuki, A. Argoitia, P. Pirouz and J. C. Angus, J. Appl. Phys., 1993, 73, 711 CrossRef CAS.
  23. W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li and M. Sunkara, Nature (London), 1993, 364, 607 CAS.
  24. B. Zhang and S. Chen, J. Appl. Phys., 1996, 79, 7241 CrossRef CAS.
  25. J. J. Dubray, C. G. Pantano and W. A. Yarbrough, J. Appl. Phys., 1992, 72, 3136 CrossRef CAS.
  26. S. Matsumoto and Y. Matsui, J. Mater. Sci., 1983, 18, 1785 CAS.
  27. U. Bergmann, K. Lummer, B. Atakan and K. Kohse-Höinghaus, Ber. Bunsen-Ges. Phys. Chem., 1998, 102, 906 CAS.
  28. J. J. Schermer, J. E. M. Hogenkamp, G. C. J. Otter, G. Janssen, W. J. P. van Enckevort and L. J. Giling, Diamond Relat. Mater., 1993, 2, 1149 CAS.
  29. L. Bergmann and R. J. Nemanich, J. Appl. Phys., 1995, 78, 6709 CrossRef.
  30. P. K. Bachmann and D. U. Wiechert, Diamond Relat. Mater., 1992, 1, 422 CAS.
  31. C. Wild, R. Kohl, N. Herres, W. Müller-Sebert and P. Koidl, Diamond Relat. Mater., 1994, 3, 373 CAS.
  32. J. C. Angus, A. Argoitia, R. Gat, Z. Li, M. Sunkara, L. Wang and Y. Wang, Philos. Trans. R. Soc. London, Ser. A, 1993, 342, 195 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.