A molecular diffusion tube study of N2O5 and HONO2 interacting with NaCl and KBr at ambient temperature

(Note: The full text of this document is currently only available in the PDF Version )

Thomas G. Koch, Hubert van den Bergh and Michel J. Rossi


Abstract

We have measured the reaction probabilities γ and surface residence times τsurf of N2O5 and HONO2 on sea-salt aerosol surrogates such as NaCl and KBr using a new experimental technique operating under molecular flow conditions which we have called molecular diffusion tube (MDT) technique. N2O5 showed a relatively weak interaction with both NaCl and KBr in good agreement with previous work using a Knudsen flow reactor. Upper limits for τsurf were of the order of 0.1 ms and reaction probabilities were measured as γ=(3±1)×10-4 and (2.5±1)×10-3 for the interaction of N2O5 with NaCl and KBr, respectively. HONO2 showed much stronger adsorption on NaCl and KBr surfaces with reaction probabilities γ=0.04±0.01 and 0.02±0.01, respectively. Residence times ranged from 1 ms on NaCl to 15 ms on KBr making the adsorption process prone to surface saturation under the present experimental conditions. Reference experiments showed that HONO2 also has a strong affinity for "‘non-reactive’' surfaces such as PTFE TeflonTM, Pyrex glass and stainless steel. These results and others obtained from molecular diffusion tube experiments so far suggest a correlation between measured surface residence times τsurf and reaction probabilities γ based on a precursor-mediated mechanism of heterogeneous reactivity. A linear free energy relationship for the molecular adsorbate is suggested involving surface reaction and desorption back into the gas phase.


References

  1. B. Versino, Proceedings of the Seventh European Symposium, “The Oxidising Capacity of the Troposphere”, The European Commission, 1996 Search PubMed.
  2. S. E. Paulson, M. Chung, A. D. Sen and G. Orzechowska, J. Geophys. Res., 1998, 94, 25533 CrossRef.
  3. S. E. Paulson and J. J. Orlando, Geophys. Res. Lett., 1996, 23, 3727 CrossRef CAS.
  4. U. Platt, G. Le Bras, G. Poulet, J. P. Burrows and G. K. Moortgat, Nature, 1990, 348, 247 CrossRef; R. P. Wayne, I. Barnes, P. Biggs, J. P. Burrows, C. E. Canosa-Mas, J. Hjorth, G. Le Bras, G. K. Moortgat, D. Perner, G. Poulet, G. Restelli and H. Sidebottom, Atmos. Environ. Part A, 1991, 25, 1.
  5. B. T. Jobson, H. Niki, Y. Yokouchi, J. Bottenheim, F. Hopper and R. Leaitch, J. Geophys. Res., 1994, 99, 25355 CrossRef.
  6. W. Behnke, C. George, V. Sheer and C. Zetzsch, J. Geophys. Res., 1997, 102, 3795 CrossRef CAS.
  7. C. George, J. L. Ponche, P. Mirabel, W. Behnke, V. Scheer and C. Zetzsch, J. Phys. Chem., 1994, 98, 8780 CrossRef CAS.
  8. W. B. DeMore, S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb and M. J. Molina, Chemical Kinetics and Photochemical Data for Use in Stratospheric Modelling, JPL Publication 97–4/12 Search PubMed.
  9. D. Scheffler, H. Grothe, H. Willner, A. Frenzel and C. Zetzsch, Inorg. Chem., 1997, 36, 335 CrossRef CAS.
  10. R. Vogt, P. J. Crutzen and R. Sander, Nature, 1996, 387, 327 CrossRef CAS.
  11. R. Sander and P. J. Crutzen, J. Geophys. Res., 1996, 101, 9121 CrossRef CAS.
  12. C. Zetzsch and W. Behnke, Ber. Bunsen-Ges. Phys. Chem., 1992, 96, 488 CAS.
  13. F. Caloz, results from a chemical-radiative box model calculation, to be published.
  14. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi and J. Troe, J. Chem, Phys. Ref. Data, 1997, 26, 521 Search PubMed.
  15. L. Barrie and U. Platt, Tellus, Ser. B, 1997, 49, 450 Search PubMed.
  16. U. Platt and E. Lehrer, Arctic Tropospheric Ozone Chemistry, Air Pollution Research Report No 64, EUR 17783, The European Commission, 1997 Search PubMed.
  17. F. Caloz, F. F. Fenter and M. J. Rossi, J. Phys. Chem., 1996, 100, 7496 CrossRef CAS.
  18. F. Caloz, S. Seisel, S. S. Fenter and M. J. Rossi, J. Phys. Chem., 1998, 102, 7470 Search PubMed.
  19. U. Platt, D. Perner, A. M. Winer, H. W. Biermann, R. Atkinson and J. N. Pitts, Environ. Sci. and Technol., 1984, 18, 365 Search PubMed.
  20. A. G. Russell, G. J. McRae and G. R. Cass, Atmos. Environ., 1985, 19, 893 CrossRef CAS.
  21. F. F. Fenter, F. Caloz and M. J. Rossi, J. Phys. Chem., 1994, 100, 7496.
  22. F. Caloz, PhD Thesis, No. 1628, EPF Lausanne, Switzerland, 1997.
  23. J. A. Davies and R. A. Cox, J. Phys. Chem. A, 1998, 102, 7631 CrossRef CAS.
  24. T. G. Koch, F. F. Fenter and M. J. Rossi, Chem. Phys. Lett., 1997, 275, 253 CrossRef CAS.
  25. T. G. Koch and M. J. Rossi, J. Phys. Chem. A, 1998, 102, 9193 CrossRef CAS.
  26. TeflonTM 120 Instruction Manual, DuPont de Nemours International S.A., Geneva, Switzerland. TeflonTM 120 is a colloid containing approximately 54% by weight of 0.1 to 0.26 µm FEP particles suspended in water.
  27. S. Dushman, Scientific Foundations of the Vacuum Technique, John Wiley and Sons, New York, 2nd edn., 1961 Search PubMed.
  28. W. Steckelmacher, Rep. Prog. Phys., 1986, 49, 1083 CrossRef CAS.
  29. F. F. Fenter, F. Caloz and M. J. Rossi, Rev. Sci. Instrum., 1997, 68, 3180 CrossRef CAS.
  30. L. L. Levenson, N. Milleron and D. H. Davis, Le Vide, 1963, 103, 42 Search PubMed.
  31. M. D. Boeckmann, J. Vac. Sci. Technol. A, 1986, 4, 353 CrossRef CAS.
  32. A. Aguzzi, 1998, unpublished results.
  33. H. C. Allen, J. M. Laux, R. Vogt, B. J. Finlayson-Pitts and J. C. Hemminger, J. Phys. Chem., 1996, 100, 6371 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.