Physico-chemical aspects of dielectric and thermodynamic changes during high-temperature polymerization and their technical use

(Note: The full text of this document is currently only available in the PDF Version )

G P. Johari, C Ferrari, G Salvetti and E Tombari


Abstract

When polymerization temperature is high, almost 100% polymerization occurs in a relatively short time. The ultimate product is either a high-viscosity fluid or an elastomer: the former when linear-chains form and the latter when a network structure forms. During polymerization at such temperatures, the liquid's configurational entropy still decreases on macromolecular growth, but most of this decrease is compensated by the high thermal energy. The amount of heat released and the change in the dielectric spectra during the step-addition polymerization of cyclohexylamine–diglycidyl ether of bisphenol-A and hexamethylene-1,6-diamine–diglycidyl ether of 1,4 butanediol have been studied in real time both isothermally and during heating, by means of an equipment designed for the purpose. These show that two competing effects determine the molecular dynamics during polymerization: (i) decrease in the configurational entropy on macromolecular growth, and (ii) increase in the configurational entropy on increasing the temperature. It is proposed that a liquid may be polymerized at such a temperature where its chosen dielectric properties reach a time-invariant value prescribed for the polymer shaping procedures. Thus a single step of thermal treatment for polymer production and shaping processes may become sufficient. The temperature for polymerization may be determined from the knowledge of the dielectric properties of the polymerized state. The chemical physics involved in this procedure has been described formally in terms of both the molecular dynamics and configurational entropy.


References

  1. M. Younes, S. Wartewig, D. Lellinger, B. Strehmel and V. Strehmel, Polymer, 1994, 35, 5269 CAS.
  2. For citations to the earlier studies on the subject, see G. P. Johari, in Chemistry and Technology of Epoxy Resins, ed. B. Ellis, Chapman and Hall, London 1993, ch. 6, p. 175, and other chapters Search PubMed.
  3. D. A. Wasylyshyn and G. P. Johari, J. Polym. Sci. Part B: Polym. Phys., 1997, 35, 437 CrossRef CAS and references therein.
  4. J. M. Barton, Adv. Polym. Sci., 1985, 72, 111 CAS.
  5. C. Ferrari, G. Salvetti, E. Tombari and G. P. Johari, Phys. Rev. E, 1996, 54, R1058 CrossRef CAS.
  6. M. G. Parthun and G. P. Johari, J. Chem. Phys., 1995, 103, 6301 CrossRef CAS.
  7. R. Feve, Makromol. Chem. Macromol. Symp., 1989, 30, 95 Search PubMed.
  8. M. G. Parthun and G. P. Johari, J. Chem. Phys., 1995, 103, 440 CrossRef CAS.
  9. E. Tombari, C. Ferrari, G. Salvetti and G. P. Johari, J. Phys. Condens. Matter., 1997, 9, 7017 CrossRef CAS.
  10. E. Tombari and G. P. Johari, J. Chem. Phys., 1992, 97, 6677 CrossRef CAS.
  11. M. G. Parthun and G. P. Johari, J. Polym. Sci., Part B: Polym. Phys., 1990, 28, 431 CrossRef CAS; Macromolecules, 1992, 25, 3254 Search PubMed.
  12. M. B. M. Mangion and and G. P. Johari, J. Polym. Sci., Part B: Polym. Phys., 1990, 28, 71 CrossRef CAS; 1991, 29, 1117; 1127.
  13. C. Ferrari, G. Salvetti, E. Tombari and G. P. Johari, J. Chem. Soc., Faraday Trans., 1998, 94, 1293 RSC.
  14. H. Vogel, Phys., Z., 1921, 22, 645 Search PubMed.
  15. G. Tamman and W. Hesse, Z. Anorg. Allg. Chem., 1926, 156, 245 CrossRef.
  16. G. Fulcher, J. Am. Ceram. Soc., 1925, 77, 3701.
  17. R. Bohmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. Phys., 1993, 99, 4201 CrossRef.
  18. G. P. Johari, in Disorder Effects in Relaxational Processes, ed. R. Richert and A. Blumen, Springer Verlag, Berlin, 1994, pp. 627–657 Search PubMed.
  19. C. Ferrari, G. Salvetti, E. Tombari and G. P. Johari, Nuovo Cimento Soc. Ital. Fis. D, 1996, 18, 443 Search PubMed.
  20. J. E. Anderson and R. Ullman, J. Chem. Phys., 1967, 47, 2178 CAS.
  21. R. W. Douglass in Proc. Int. Congr. on Rheol. 4th, ed. E. H. Lee, Wiley, New York, 1965, pp. 3–27 Search PubMed; Brit. J. Appl. Phys., 1966, 17, 435 Search PubMed.
  22. C. K. Majumdar, Solid State Commun., 1971, 9, 1087 CrossRef.
  23. J. T. Bendler and M. F. Schlesinger, Macromolecules, 1985, 18, 591 CrossRef CAS.
  24. K. Schmidt-Rohr and H. W. Speiss, Phys. Rev. Lett., 1991, 66, 3020 CrossRef CAS.
  25. M. T. Cicerone, F. R. Blackburn and M. F. Ediger, J. Chem. Phys., 1995, 102, 471 CrossRef CAS.
  26. B. Scheiner, R. Bohmer, A. Loidl and R. V. Chamberlain, Science, 1996, 274, 752 CrossRef CAS.
  27. G. Adam and J. H. Gibbs, J. Chem. Phys., 1965, 43, 139 CrossRef CAS.
  28. E. Donth, Relaxation and Thermodynamics in Polymer-Glass Transition, Academic-Verlag, 1992 Search PubMed; Glasubergang WTB, Band 271. Academie-Verlag-Berlin, 1981.
  29. S. Matsuoka, Relaxation Processes in Polymer, Hanser, New York, 1992 Search PubMed.
  30. R. Richert and C. A. Angell, J. Chem. Phys., 1998, 108, 9016 CrossRef CAS.
  31. M. B. M. Mangion and G. P. Johari, J. Polym. Sci., Part B: Polym. Phys., 1991, 29, 1127 CAS.
  32. C. Ferrari, E. Tombari, G. Salvetti and G. P. Johari, J. Chem. Phys., 1999, 110 Search PubMed in the press.
  33. M. B. Mangion, M. Wang and G. P. Johari, J. Polym. Sci., Part B: Polym. Phys., 1992, 30, 433 CrossRef CAS.
  34. E. Tombari and G. P. Johari, J. Chem. Soc., Faraday Trans. 2, 1993, 89, 3477 Search PubMed.
  35. G. P. Johari, J. Chem. Soc., Faraday Trans. 2, 1994, 90, 883 Search PubMed.
  36. G. Williams, I. K. Smith, P. A. Holmes and S. Varma, J. Phys. Condens. Matter, 1999, 11, A57 CrossRef CAS.
  37. D. A. Wasylyshyn, G. P. Johari, E. Tombari and G. Salvetti, Chem. Phys., 1997, 223, 313 CrossRef CAS.
  38. D. A. Wasylyshyn, G. P. Johari, G. Salvetti and E. Tombari, J. Phys. Condens. Matter, 1997, 9, 10521 CrossRef CAS.
  39. J.-F. Zhou and G. P. Johari, Macromolecules, 1997, 30, 8085 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.