Photoinduced charge separation of phenothiazine derivatives in layered zirconium phosphate at room temperature

(Note: The full text of this document is currently only available in the PDF Version )

R M. Krishna, Vadim Kurshev and Larry Kevan


Abstract

The photoionization of alkylphenothiazines in layered α-zirconium phosphate (α-ZrP or ZrP) has been studied by electron spin resonance (ESR) and diffuse reflectance spectroscopies. Alkylphenothiazines (PCn where n=1, 2, 3, 4, 6, 8, 10, 16) were synthesized and used to study the effects of the alkyl chain length. Phenothiazine and N-alkylphenothiazines were incorporated into ZrP by impregnation and ion-exchange methods. By both methods N-alkylphenothiazines are only incorporated onto the external surface of zirconium phosphate rather than into the interlayer space. The alkylphenothiazines photooxidize at room temperature to form stable alkylphenothiazine cation radicals (PCn+) which are measured by ESR and diffuse reflectance. The framework of ZrP is suggested to be the electron acceptor. Both the photoyield and the decay rate of the alkylphenothiazine cation radical depend on the alkyl chain length. As the alkyl chain length of the PCn+ cation radical increases from methyl to hexyl, the photooxidation yield increases; and as the alkyl chain length increases further from hexyl to hexadecyl, the photooxidation yield decreases. However, the decay rate of the PCn+ cation radical gradually increases from methyl to hexadecyl which is explained in terms of a greater inductive effect for longer alkyl chains on the PCn+ cation radicals. Also, the resolution of the ESR spectrum decreases with increasing alkyl chain length which is interpreted as being due to decreasing mobility of the radical which should also decrease the decay rate. Both impregnation and ion-exchange methods are reasonably effective for incorporating alkylphenothiazine molecules into ZrP for efficient photooxidation. The photoyields of N-alkylphenothiazines in ZrP are larger than in silica gel which suggests that ZrP assemblies can be utilized for solar energy conversion and storage.


References

  1. Photoinduced Electron Transfer, ed. M. A. Fox and M. Chanon, Elsevier, Amsterdam, 1988 Search PubMed.
  2. M. Gratzel, Heterogeneous Photochemical Electron Transfer, CRC, Boca Raton, FL, 1989 Search PubMed.
  3. J. H. Fendler, J. Phys. Chem., 1985, 89, 2730 CrossRef CAS.
  4. G. J. Kavarnos and N. J. Turro, Chem. Rev., 1986, 86, 401 CrossRef CAS.
  5. J. S. Connolly, Photochemical Conversion and Storage of Solar Energy, Academic Press, New York, 1981 Search PubMed.
  6. A. Slama-Schwok, D. Avnir and M. Ottolenghi, Photochem. Photobiol., 1991, 54, 525 CAS.
  7. D. Gust, T. A. Moore, P. A. Liddell, G. A. Nemeth, L. R. Makings, A. L. Moore, D. Barrett, P. J. Pessiki, R. V. Bensasson, M. Rougee, C. Chachuty, F. C. De Schryver, M. van der Auweraer, A. R. Holzwarth and J. S. Connolly, J. Am. Chem. Soc., 1987, 109, 846 CrossRef CAS.
  8. P. D. Dutta and J. A. Incavo, J. Phys. Chem., 1987, 91, 4443 CrossRef CAS.
  9. T. J. Meyer, Acc. Chem. Res., 1989, 22, 163 CrossRef CAS.
  10. T. Nakato, K. Kazuyuki and C. Koto, Chem. Mater., 1992, 4, 128 CrossRef CAS.
  11. A. Slama-Schwok, M. Ottolenghi and D. Avnir, Nature, 1992, 355, 40 CrossRef.
  12. W. F. Forbes and P. D. Sullivan, J. Am. Chem. Soc., 1966, 88, 2862 CrossRef CAS.
  13. H. J. Shine, D. R. Thompson and C. Veneziani, J. Heterocycl. Chem., 1967, 4, 517 CAS.
  14. E. R. Biehl, H. S. Chiou, J. Keepers, S. Kennard and P. C. Reeves, J. Heterocycl. Chem., 1975, 12, 397 CAS.
  15. D. Clarke, B. C. Gilbert and P. Hanson, J. Chem. Soc., Perkin Trans., 1978, 2, 1103 Search PubMed.
  16. S. A. Alkaitis, G. Beck and M. Gratzel, J. Am. Chem. Soc., 1975, 97, 5723 CrossRef CAS.
  17. B. Xiang and L. Kevan, Langmuir, 1994, 10, 2688 CrossRef CAS.
  18. M. Sakaguchi, M. Hu and L. Kevan, J. Phys. Chem., 1990, 94, 870 CrossRef CAS.
  19. M. Hu and L. Kevan, J. Phys. Chem., 1990, 94, 5348 CrossRef CAS.
  20. Y. S. Kang, P. Baglioni, H. J. D. McManus and L. Kevan, J. Phys. Chem., 1990, 94, 870 CrossRef CAS.
  21. Y. S. Kang, H. J. D. McManus and L. Kevan, J. Phys. Chem., 1993, 97, 2027 CrossRef CAS.
  22. Inorganic Ion Exchange Materials, ed. A. Clearfield, CRC, Boca Raton, FL, 1982 Search PubMed.
  23. S. B. Ungashe, W. L. Wilson, H. E. Katz, G. R. Scheller and T. M. Putrvinski, J. Am. Chem. Soc., 1992, 114, 8717 CrossRef CAS.
  24. A. Clearfield and G. D. Smith, Inorg. Chem., 1969, 8, 431 CrossRef CAS.
  25. R. C. Yeates, S. T. Kuznicki, L. B. Lloyd and E. M. Eyring, J. Inorg. Nucl. Chem., 1981, 43, 2355 CAS.
  26. A. Clearfield and J. A. Stynes, J. Inorg. Nucl. Chem., 1964, 26, 117 CrossRef CAS.
  27. I. Gozlan, D. Ladkani, M. Halpern, M. Rabinovitz and D. J. Anoir, J. Heterocycl. Chem., 1984, 21, 613 CAS.
  28. S. A. Alkaits, G. Beck and M. Gratzel, J. Am. Chem. Soc., 1975, 97, 5723 CrossRef CAS.
  29. M. C. Hovey, J. Am. Chem. Soc., 1982, 104, 4196 CrossRef CAS.
  30. H. Hase and L. Kevan, J. Phys. Chem., 1970, 94, 3355 CrossRef.
  31. A. M. Braun, M.-A. Gilson, M. Krieg, M.-T. Maurett, P. Murasecco and E. Oliveros, in Organic Phototransformations in Nonhomogeneous Media, ACS Symp. Ser. 278, ed. M. A. Fox.American Chemical Society, Washington, DC, 1985, p. 79 Search PubMed.
  32. N. I. Wakayama, Bull. Chem. Soc. Jpn., 1971, 44, 2847 CAS.
  33. P. Kabasakalian and J. MacGlotten, Anal. Chem., 1959, 31, 431 CrossRef CAS.
  34. C. Bodea and I. Silberg, Advn. Heterocycl. Chem., 1968, 9, 321 Search PubMed.
  35. B. Xiang and L. Kevan, Langmuir, 1995, 11, 860 CrossRef CAS.
  36. L. S. Levitt and H. F. Widing, in Progress in Physical Organic Chemistry, ed. R. W. Taft, Wiley, New York, 1976, vol. 12, ch. 5 Search PubMed.
  37. R. R. Gupta and K. Mahendra, in Phenothiazines and 1,4-Benzothiazines: Chemical and Biomedical Aspects, ed. R. R. Gupta, Elsevier, Amsterdam, 1988 Search PubMed.
  38. L. Louis, T. N. Tozer, L. D. Tuck and D. B. Loveland, J. Med. Chem., 1972, 15, 898 CrossRef.
  39. A. Ortiz, I. Poyato and J. I. Fernandez-Alonso, J. Pharm. Sci., 1983, 72, 50 CAS.
  40. E. Pelizzetti and E. Mentasi, Inorg. Chem., 1979, 18, 583 CrossRef CAS.
  41. R. van Grondelle, Biochim. Biophys. Acta, 1985, 811, 147 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.