The evolution of multicomponent systems at high pressures Part II.The Alder–Wainwright, high-density, gas–solid phase transition of the hard-sphere fluid

(Note: The full text of this document is currently only available in the PDF Version )

J F. Kenney


Abstract

The thermodynamic stability of the hard-sphere gas has been examined, using the formalism of scaled particle theory (SPT), and by applying explicitly the conditions of stability required by both the second and third laws of thermodynamics. The temperature and volume limits to the validity of SPT have also been examined. It is demonstrated that SPT predicts absolute limits to the stability of the fluid phase of the hard-sphere system, at all temperatures within its range of validity. Because SPT describes fluids equally well as dilute gases or dense liquids, the limits set upon the system stability by SPT must represent limits for the existence of the fluid phase and transition to the solid. The reduced density at the stability limits determined by SPT is shown to agree exactly with those of that estimated for the Alder–Wainwright, high-density gas–solid phase transition in a hard-sphere system, at a specific temperature, and closely over a range of more than 1000 K. The temperature dependence of the gas–solid phase stability limits has been examined over the range 0.01 K–10000 K. It is further shown that SPT describes correctly the variation of the entropy of a hard-core fluid at low temperatures, requiring its entropy to vanish as T→0 by undergoing a gas–solid phase transition at finite temperature and all pressures.


References

  1. J. F. Kenney, Fluid Phase Equilib., 1998, 148, 21 CrossRef CAS.
  2. B. J. Alder and T. E. Wainwright, J. Chem. Phys., 1957, 27, 1208 CrossRef CAS.
  3. J. G. Kirkwood, J. Chem. Phys., 1935, 3, 300 CAS.
  4. M. Born and H. S. Green, Proc. R. Soc. London, 1946, 188, 10 Search PubMed.
  5. H. Reiss, H. L. Frisch and J. L. Lebowitz, J. Chem. Phys., 1959, 31, 369 CrossRef CAS.
  6. H. Reiss, H. L. Frisch, E. Gelfand and J. L. Lebowitz, J. Chem. Phys., 1960, 32, 119 CAS.
  7. H. Reiss, “Scaled particle theory in the statistical thermodynamics of fluids”, in Adv. Chem. Phys., ed. I. Prigogine, Interscience, New York, 1965, vol. 9 Search PubMed.
  8. T. De Donder, L'Affinity, Paris, 1936 Search PubMed.
  9. I. Prigogine and R. Defay, Chemical Thermodynamics, Longmans, London, 1954 Search PubMed.
  10. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability, and Fluctuations, John Wiley, New York, 1971 Search PubMed.
  11. I. Prigogine, Introduction to the Thermodynamics of Irreversible Processes, John Wiley, New York, 1967 Search PubMed.
  12. I. Prigogine and C. George, Proc. Nat. Acad. Sci., 1983, 80, 4590.
  13. H. Reiss, H. L. Frisch and J. L. Lebowitz, “Mixtures of hard spheres”, in The Equilibrium Theory of Classical Fluids, ed. H. L. Frisch and J. L. Lebowitz, W. A. Benjamin, New York, 1964 Search PubMed.
  14. H. Reiss, J. Chem. Phys., 1967, 47, 186 CAS.
  15. H. Reiss and D. M. Tully-Smith, J. Chem. Phys., 1971, 55, 1674 CAS.
  16. H. Reiss and R. V. Casberg, J. Chem. Phys., 1974, 61, 1107 CAS.
  17. H. Reiss, “Scaled particle theory of hard sphere fluids to 1976”, in Statistical Mechanics and Statistical Methods in Theory and Application, ed. U. Landman, Plenum, London, 1977 Search PubMed.
  18. D. M. Tully-Smith and H. Reiss, J. Chem. Phys., 1970, 33, 4015 CrossRef.
  19. N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51, 635 CrossRef CAS.
  20. H. F. Baker, Proc. London Math. Soc., 1902, 34, 347.
  21. J. E. Campbell, Proc. London Math. Soc., 1898, 29, 14 Search PubMed.
  22. H. F. Baker, Proc. London Math. Soc., 1903, 2, 293.
  23. H. F. Baker, Proc. London Math. Soc., 1904, 3, 24.
  24. F. Hausdorff, Ber. Verh. Saechs. Akad. Wiss. Leipzig, Math-Naturwiss., 1906, 58, 19 Search PubMed.
  25. B. J. Alder, W. G. Hoover and D. A. Young, J. Chem. Phys., 1968, 49, 3688 CrossRef CAS.
  26. U. K. Deiters and K. M. de Reuck, International Union of Pure and Applied Chemistry, 1997 Search PubMed.
  27. J. D. Bernal, Nature, 1959, 183, 141.
  28. G. O. Jones and P. A. Walker, Proc. Phys. Soc. B., 1953, 69, 1348 Search PubMed.
  29. R. H. Fowler and E. A. Guggenheim, Statistical Mechanics, Cambridge University Press, Cambridge, 1939 Search PubMed.
  30. J. Timmermans and L. Deffet, Le Polymorphisme des Composes Organiques, Gauthier-Villars, Paris, 1939 Search PubMed.
  31. T. Boublik, C. K. Viga and M. Diaz-Pena, J. Chem. Phys., 1990, 93, 730 CrossRef CAS.
  32. W. G. Chapman, K. E. Gubbins, G. Jackson and M. Radosz, Ind. Eng. Chem. Res., 1990, 29, 1709 CrossRef CAS.
  33. I. Nezbeda, Mol. Phys., 1997, 90, 661 CrossRef.
  34. P. Vimalchand, A. Thomas, I. G. Economou and M. D. Donohue, Fluid Phase Equilib, 1992, 73, 39 CrossRef CAS.
  35. Y. Zhou, S. W. Smith and C. Hall, Mol. Phys., 1995, 85, 1157.
  36. U. K. Deiters and S. L. Randzio, Fluid Phase Equilib, 1995, 103, 199 CrossRef CAS.
  37. U. K. Deiters, Mol. Phys, 1992, 96, 539.
  38. A. C. Mitus, H. Weber and D. Marx, Phys. Rev., 1997, E55, 6855 Search PubMed.
  39. W. G. Hoover, N. E. Hoover and K. Hansen, J. Chem. Phys., 1979, 70, 1837 CrossRef CAS.
  40. E. Helfand, H. L. Frisch and J. L. Lebowitz, J. Chem. Phys., 1961, 34, 1037 CAS.
  41. L. Tonks, Phys. Rev., 1936, 50, 955 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.